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The ADvanced CIRCulation (ADCIRC) model is a finite-element hydrodynamic model
based on the generalized wave continuity equation (GWCE). The model assumed fixed
land boundaries until a wetting and drying algorithm was implemented by Luettich and
Westerink in 1995 [1,2]. The algorithm uses an element-based approach, effectively turning
elements on and off based on water depths and a water level gradient. While robust in
some simulations, the algorithm can be subject to instabilities in the solution during highly
nonlinear events. Thus, a rigorous assessment of the algorithm’s stability, accuracy. mass
balance properties, and parameter sensitivity under a variety of conditions is needed.
Herein, we examine these issues using a one-dimensional implementation of the wetting
and drying algorithm for basins with a linear slope; future studies will examine a wider
variety of real and idealized basins. We believe the results of this work will benefit similar
studies in two- or three-dimensions, for users and developers of both ADCIRC and other
finite element models. 1

1. BACKGROUND

Shallow water equations are used by researchers and engineers to model the hydro-
dynamic behavior of oceans, coastal areas, estuaries, lakes and impoundments [3]. The
finite element solutions of these equations have been improved by two equations: the wave
continuity equation (WCE), introduced by Lynch and Gray [4] to suppress the spurious
oscillations inherent to the primitive equations without having to dampen the solution
either numerically or artificially; and the generalized wave continuity equation (GWCE),
introduced by Kinnmark [5] to allow a balance between the primitive and pure wave forms
of the shallow water equations by adding a weighted form of the primitive equation to
the wave equation and using a weighting parameter G. The finite element model used in
this paper, ADCIRC, was developed from the GWCE [6.7].

One area where ADCIRC and other hydrodynamic models may have problems is wetting
and drying. Large-scale water behavior is often driven by wind and tides, of which the
most notable is the M, tide caused by the gravitational effects of the moon. Where the
tides meet the shore, the water should move up and down the beach, causing areas to
alternate between being wet and dry. Simply ignoring this behavior and treating the
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shoreline as a firm boundary, as was done in early versions of ADCIRC, allows the water
to build up on boundary nodes as if against a vertical wall, which also affects the manner
in which waves reflect. Clearly, this can introduce phase and amplitude errors into near-
shore circulation. A more physically-realistic model would turn on and off nodes and
elements as the tide advances and recedes, as is done in recent versions of ADCIRC.
However, many of its parameters have yet to be rigorously assessed, a problem which
forms the basis for this study.

2. METHODS

In this section, we will discuss the implementation of a wetting and drying algorithm
in the one-dimensional ADCIRC model. We will also describe our two model problems
and the methods in which we assess the errors in our numerical results.

2.1. Wetting and drying algorithm

The one-dimensional ADCIRC wetting and drying algorithm is an approach developed
by Luettich and Westerink [1,2] and is based on simplified physics and some empirical
rules. The algorithm is located in the middle of the time loop, after the solution of the
continuity equation but before the solution of the momentum equation. The algorithm is
comprised of three parts.

First, the total water depth at every node is checked against a minimum wetness height,
Humin. If the total water depth is larger than this minimum value, then the node remains
active (“wet”) and is included in the rest of the calculations. However, if the total water
depth has fallen below this minimum value, then the node is inactive (“dry”) and removed
from the calculations. Note that a dry node can have a positive water depth that is smaller
than Hmin. To help control oscillations, an input parameter allows the user to control the
number of time steps that a node has to remain wet before it can be turned off; for all of
the results in this paper, that parameter was set to 5 time steps.

Second, the steady state velocity that would result from a balance between the water
level gradient and the bottom friction between a wet and an inactive node is checked

T

against a minimum wetting velocity, Umin. The balance is given by:
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where ¢ is gravity; (;_; and (; are the free surface elevations at the adjacent node and
the node of interest, respectively; 7; is the equivalent linear bottom friction coefficient
(see Equation 7); and Ax; is the grid spacing. Note that in many situations, only the
free surface elevations will change significantly from time step to time step. In this case,
the Umin criterion almost becomes a height restriction, where a node wets if the adjacent
node’s free surface elevation is sufficiently larger than its own. Again, to help control
oscillations, another input parameter allows the user to control the number of time steps
that a node has to remain inactive before it can be wetted; for all of the results in this
paper, that parameter was set to 5 time steps.

Third, every landlocked wet node is tagged as inactive. A landlocked wet node is not
connected to any active elements, and thus does not receive contributions to either side of
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the equation corresponding to that node. For some bathymetries, this criterion allows a
node to remain inactive even if its total water depth is larger than the minimum wetting
height. However, this criterion only applies to lone active nodes surrounded by inactive
nodes; if there is more than one active node. and thus one or more active elements. then
the region is allowed to remain active.

2.2. Model problems

The studies in this paper utilize two similar model problems. Both are linear sloping
beaches with an open ocean boundary on the left-hand side, and both are forced by a
tidal amplitude. We chose this bathymetry because: (1) it allows for a comparison with
an analytical solution, as discussed in Section 3.1; and (2) it allows for a simple test case
before moving forward to more complicated bathymetries, as discussed in Section 4.

The first model problem is similar to a test problem presented by Luettich and West-
erink [1] in an earlier ADCIRC wetting-and-drying paper. The problem has the following
parameters (unless stated otherwise): a linear slope, an undisturbed length of 20 kilome-
ters, a bathymetric depth at the open ocean boundary of 5 meters, a grid spacing of 250
meters, a time step of 10 seconds, a forcing amplitude of 0.25 meters, a tidal period of 12
hours (43,200 seconds), a duration of 4 tidal periods. a cftau value of 0.001 and a G value
of 0.001 sec™" (both defined in Section 3.3), a Hmin value of 0.01 meters, and a Umin value
of 0.01 meters per second. We will refer to this as Model Problem 1.

The second model problem creates a situation where waves can wet and dry a larger
number of nodes on the beach. This problem is deeper but shorter, and it allows wave
run-up to cover more of the beach. This problem has the following parameters (unless
stated otherwise): a linear slope, an undisturbed length of 18 kilometers, a bathymetric
depth at the open ocean boundary of 6 meters, a grid spacing of 250 meters, a time step
of 10 seconds, a forcing amplitude of 1.0 meter, a tidal period of 12 hours (43.200 sec).
a duration of 4 tidal periods, a cftau value of 0.001 and a G value of 0.001 sec™' (both
defined in Section 3.3), a Hmin value of 0.01 meters, and a Umin value of 0.01 meters per
second. We will refer to this as Model Problem 2.

2.3. Error computations

Our sensitivity studies utilize a comparison between our numerical results and the
analytical solution described in Section 3.1. This comparison is calculated through an
examination of the position of the wet/dry interface over the fourth tidal period (because
the model is spun up from a cold start for the first three periods). After every 10 minute
interval in that fourth period, we calculate the difference between the position of the
interface given by the numerical results and the position of the interface given by the ana-
lytical solution. These differences are then averaged. If the numerical results successfully
approximate the analytical solution, then the average difference should be zero. However,
spatial discretization often prevents a perfect match between numerical and analytical, so
we are satisfied if the average difference is less than the grid spacing of 250 meters.

Our studies also utilize a computation of mass balance error. This is a cumulative mass
balance error over the entire simulation. It is calculated using a finite volume approach,
where we compute the difference between the global accumulation and the global mass
flux, as represented by the primitive continuity equation. Recently, several papers [8.9]
have advocated computing mass balance from finite element residuals in order to be
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consistent with the numerical diseretization. However, we have shown (Kolar et al. [13])
the finite volume approach to be a good surrogate variable for accuracy and phasing
errors; that is, small mass balance errors (as computed with finite volume) correlate with
small constituent errors. Hence our reason for using the finite volume approach herein.

3. NUMERICAL EXPERIMENTS

In this section, we discuss the results of several tests involving the wetting and drying
algorithm. First, we compare the numerical results with an analytical solution. Second,
we examine the algorithm’s effect on temporal stability. Third, we conduct parameter
sensitivity studies for bottom friction and the G numerical parameter. Fourth, we conduct
parameter sensitivity studies for the wetting and drying parameters Hmin and Umin. Fifth,
we examine the effect of spatial resolution on the performance of the algorithm.

3.1. Comparison with an analytical solution

The classic analytical solution for wave run-up on a sloping beach was first expressed
by Carrier and Greenspan [10] and later revisited by Johns [11] and Siden and Lynch
[12]. The solution is quite restrictive; it describes the behavior of a frictionless wave
on a linearly-sloped beach. The one-dimensional wetting-and-drying ADCIRC model
incorporates bottom friction and can be applied to complex bathymetries. However, it is
important to verify its performance against an analytical solution in this simple test case.

The full equations for the analytic solution are given in the latter two references. We will
reproduce the important ones here. The equations for the velocity, horizontal position,
and elevation of the shoreline are given by:

o0& ou 2Arm ou\ . /2w
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U - u 5 T (1 + Dt) sin ( T (t + u,)) ; (2)
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where u is the scaled velocity, £ is the scaled horizontal displacement, A is the scaled
amplitude, T'is the scaled period, ¢ is the scaled time, and ( is the scaled free surface
elevation from the mean. Note that Equation 4 holds true because the scaling changes the
slope to 45 degrees. We solve for u in Equation 2 by using an iterative technique, a finite
difference approximation of the du/dt terms, and the knowledge that the velocity of the
shoreline at maximum inundation is zero. Once the shoreline information is calculated,
then the velocity and elevation at interior points can be calculated using the following
equations:
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and
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where .Jy and J; are Bessel functions and z is scaled horizontal position. Equation 5 and
Equation 6 must also be solved iteratively. Note that the ADCIRC boundary forcing was
adjusted to match the cosine forcing of the analytical solution.

We attempted to match our numerical results with the analytical solution by using
Model Problem 1. Figure 1 and Figure 2 show the analytical solution and numerical
results at two points in the second tidal cycle. (Without a ramp function to smooth
the transition from a cold start, the numerical solution experiences some start-up noise
during the first tidal cycle.) Note that the numerical results shows good agreement with
the analytical solution and that there is no friction-induced lag at the shoreline. We
believe the good agreement is due to our relatively small value of cftau, so that the
bottom friction does not dominate the momentum balance.

Figure 3 shows the position of the shoreline over the first three tidal periods. (This is
similar to Figures 2 and 3 in Johns [11].) After the numerical results fight through the
noise of the first tidal period, they show very good agreement with the analytical solution.
There is some visible lag during the wetting phase, which raises the question of whether
we need to relax our wetting criterion. That question will be addressed in a parameter
study in Section 3.4; for now, we believe the information in these figures shows that the
ADCIRC model can provide accurate results for this simple test case.

3.2. Heuristic stability

Stability was measured by determining the maximum time step (within 5 seconds) at
which the model still provided valid results. However, it is difficult to measure the impact
of the wetting and drying algorithm on stability because our model problems cannot be
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Figure 3. The position of the shoreline, as Figure 4. The position of the shoreline, as
given by the numerical results (black dots) given by the numerical results (black dots)
and the analytical solution (solid line) for =~ and the analytical solution (solid line) for
the first three tidal periods. the first four tidal periods.

run with the original fixed-boundary ADCIRC model. In order to prevent instabilities
during the ebb phase when nodes should dry but cannot, we altered our model problems
so that they could be run with the original model.

For Model Problem 1, we shortened the domain to 16 kilometers so that there is a
bathymetry of 1 meter at the land boundary. This prevents the 0.25 meter forcing ampli-
tude from trying to dry out nodes on the beach. All of the other parameters, including the
slope, remained the same. Under these conditions, the original ADCIRC model provided
a maximum stable time step of 60 seconds. The wetting and drying model, when applied
to the unaltered Model Problem 1, provided a maximum stable time step of 55 seconds.
This is a decrease of 8.3 percent.

For the more nonlinear Model Problem 2, we shortened the domain to 12 kilometers so
that there is a bathymetry of 2 meters at the land boundary. This prevents the 1 meter
forcing amplitude from trying to dry out nodes on the beach. All of the other param-
eters, including the slope, remained the same. The original ADCIRC model provided a
maximum stable time step of 50 seconds. The wetting and drying model, when applied
to the unaltered Model Problem 2, provided a maximum stable time step of 15 seconds.
This is a decrease of 70 percent.

Note that, for both problems, mass balance errors were a order of magnitude greater
for the wetting and drying model. These errors were concentrated on the beach where
nodes are turned on and off.

3.3. Parameter sensitivity—cftau and G

Two important parameters in the ADCIRC model are cftau and G, the former being a
physical parameter and the latter being purely numerical. The parameter cftau controls
bottom friction in the model. It is used as a coefficient in the calculation of the equivalent
linear bottom friction coefficient, 7, in the momentum equation for each node

T = cftau (l;_i; ) : (7)

T
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Note that the magnitude of 7 is directly proportional to the magnitude of ¢ftau; as cftau
goes to zero, so does 7. As expected, bottom friction plays a significant role in the wetting
and drying process. Its relative magnitude increases in shallower, near-shore waters and
hence it directly affects the speed at which waves inundate or recede.

The parameter G is the numerical parameter introduced by Kinnmark [5] to control the
balance between the wave continuity equation and the primitive continuity equation. As
G is decreased, the GWCE become more like a pure wave equation; as G is increased, the
GWCE more closely approximates the primitive equation. As reported elsewhere [13], if
G is too high, the solution develops spurious oscillations, which prevent the model from
capturing the behavior of the waves.

Because these two parameters are related in their effects on the model’s behavior, it
is important to examine them in tandem. Kolar et al [13] determined an optimal range
of G/ to be on the order of 1 to 10. However, that study examined the effects of these
parameters on barotropic tides without wetting and drying. Herein, we examine their
effects on wetting and drying by varying the parameters cftau and G from 0.000001 to 0.5
(always in sec™! for G; cftau is dimensionless), creating a matrix of cftau-G combinations.
For each combination, we compared the behavior of the model with the analytical solution
described above, and we examined the model’s mass balance properties. The tests in this
section use Model Problem 2.

The comparison with the analytical solution was performed by averaging the differences
between the numerical results and the analytical solution over the fourth tidal cycle, as
discussed above in Section 2.3. By plotting these averages for each combination in the
matrix, we developed a three-dimensional surface that cannot be meaningfully reproduced
in this space. However, we can share some observations from this surface. First, the
model is unstable in almost one fourth of the matrix, in the region where both cftau and G
approach 0.000001. It is stable, however, in the regions where only one of these parameters
approaches this minimum value. Second, the model is significantly more sensitive to
variations in cftau. The variations with regard to G are not nearly so pronounced.

Third, in general, the average differences between the numerical results and the an-
alytical solution decrease as cftau is decreased. This trend is intuitive, considering the
analytical solution is frictionless. A slice of the matrix where cftau is held constant at
a value of 0.000001 and G is varied would show average differences on the magnitude of
three times the grid spacing of 250 meters.

Interestingly, the best agreement between the numerical results and the analytical solu-
tion occurs with a combination such as ¢ftau = 0.0001 and G = 0.01 sec', which provides
an average difference of 211 meters, or less than one grid spacing. Figure 4 shows the
position of the wet/dry interface over time for a simulation using this combination. The
numerical results experience some start-up noise during the first two tidal cycles, but then
they show good agreement with the numerical solution during the fourth tidal cycle. We
will use this combination of cffau and G in Section 3.4, where we are explicitly trying
to match the analytical solution. However, it should be remembered that the analytical
solution does not include bottom friction, so it will not be accurate for all situations. In
general, the values of c¢ftau and G should be determined based on the bottom friction
requirements of the particular simulation.
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Figure 5. Mass balance errors for 144 combinations of cftau and G. The errors in the
region at the front of the graph are on the order of 1,000 to 2,000 square meters.

The examination of the model’s mass balance properties was performed in the same
manner, by creating a matrix of cftau-G combinations. The mass balance error was
calculated using the finite volume approach, described in Section 2.3. Using these average
mass balance errors, we created another three-dimensional surface, this time shown in
Figure 5. The model is unstable for the same region of combinations, where both eftau and
G approach 0.000001. However, if G remains relatively large, then c¢ftau can be decreased
without significant penalty. For example, a typical range of cftau from 103 to 10> shows:
(1) mass balance errors on the order of 2,000 square meters, or approximately 3.7 percent
of the total undisturbed water area; and (2) when G is decreased to its minimum stable
value, ratios of GG/7 are in the range of 1 to 10 (optimum range reported by Kolar et
al. [13] in their fixed-boundary barotropic studies). Note that values of cftau larger than
1072 do show good mass balance, but they produce unrealistically damped simulations.
3.4. Parameter sensitivity - Hmin and Umin

Another pair of important numerical parameters is Hmin and Umin, described above in
Section 2.1. Both parameters affect the ability of the algorithm to wet or dry nodes. The
parameter Hmin controls the drying phase, and the parameter Umin controls the wetting
phase. For example, a large value for Hmin would allow nodes to dry while still holding a
significant amount of water, causing nodes to dry much faster than they should. Similar
problems would be experienced if the value for Hmin is too small or if the value of Umin is
at either extreme. Thus, it is important to consider the effects of the two parameters in
tandem.

We accomplished this consideration by using the same technique as for cftau and G.
We examined the effects of Hmin and Umin by varying each parameter from 0.0001 to 0.5
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(meters for Hmin; meters per second for Umin), creating a matrix of Hmin- Umin combina-
tions. For these runs, we used cftau = 0.0001 and G = 0.01 sec™ which the previous
study found to produce meaningful solutions. We also used Model Problem 2. For each
combination of Hmin and Umin, we compared the behavior of the model with the analytical
solution and we examined the model’s mass balance properties.

The comparison with the analytical solution was performed by using the same technique
as above, where we built a matrix of average differences between the numerical results and
the analytical solution. We offer the following observations. First, the model does not go
unstable anywhere in the range from 0.0001 to 0.5. In fact, we were able to successfully
decrease Hmin to 107! meters; the model behaves similarly for all values of Hmin less than
0.01 meters, as shown in Figure 6. However, increasing Hmin beyond the upper limit of
this range does cause instabilities, especially for unrealistic values such as 10 meters.

Second, the parameter Umin has no significant effect on the behavior of the model for
the conditions of this problem. Figure 7 shows a slice where Hmin has a constant value of
0.01 meters and Umin is varied. In this graph, there is no noticeable change between the
average- differences for the extreme values of Umin = 0.0001 meters per second and Umin
= 0.5 meters per second. Similar behavior was observed when Hmin was held to other
constant values, i.e., results are insensitive to the parameter Umin for this test problem.

The examination of the model’s mass balance properties was performed in the same
manner as described in Section 2.3. The mass balance error was calculated by comput-
ing the difference between the global accumulation and the global mass flux. A three-
dimensional surface of average mass balance errors over four tidal cycles revealed the
following. First, again, the model does not experience instabilities for any combination
of Hmin and Umin within the range from 0.0001 to 0.5. Second, the wetting criterion Umin
does not have an effect on mass balance. Third, the average mass balance errors decrease
as Hmin is increased. Figure 8 shows that the errors decrease from a steady 1100 square
meters when Hmin is less than 0.01 to about 400 square meters when Hmin = 0.5. However,
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this decrease is at the expense of accuracy. as discussed above and shown in Figure 6.
For such a large value of Hmin, the numerical results are unable to match the analytical
solution.

Thus, results indicate an optimal value for these two parameters are Hmin and Umin 18
around 0.01. There does not appear to be a lower limit for either parameter; however,
nothing is gained by decreasing either parameter to the limits of machine precision. We
will continue to use values of 0.01 for both parameters.

3.5. Spatial resolution

Spatial resolution also plays a significant role in the simulation of wetting and drying,
because it controls the model’s ability to follow the position of the shoreline as it inundates
and recedes. Using Model Problem 2, we varied the spatial resolution from a minimum
of 100 meters to a maximum of 2000 meters. For each grid spacing, we compared the
behavior of the model with the analytical solution and we examined the model’s mass
balance properties.

Figure 9 shows the average difference between the numerical results and the analytical
solution for the various spatial resolutions. Note that all of the simulations were run with
a time step of 10 seconds except for those with spatial resolutions of 100 meters and 120
meters, which were run with a time step of 1 second in order to maintain stability. The
graph shows a sublinear convergence rate as the grid spacing is decreased.

Figure 10 shows the mass balance errors for the various spatial resolutions. This graph
supports the use of the finite volume approach as a predictor of model behavior because,
as the grid spacing is decreased, the mass balance errors also decrease.

4. CONCLUSIONS AND FUTURE WORK
Based on the studies in this paper, we offer the following conclusions:

e ADCIRC’s wetting and drying algorithm can simulate wave run-up on a frictionless
beach, even one tidal period after a cold start.

e The algorithm imposes stability restrictions, which can be severe in nonlinear appli-
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cations. Our Model Problem 2 experienced a 70 percent reduction in the maximum
stable time step, as compared to a fixed-boundary simulation.

e The numerical parameter G must remain relatively large (i.e., greater than 0.001
sec™1), especially for typical values of cffau in the range from 0.001 to 0.00001.
However, combinations of c¢ftau and G in that range show reasonable mass balance
errors and values of G/7 in the same range as for non-wetting/drying barotropic
applications.

e The minimum wetness height Hmin shows acceptable behavior for all values less than
or equal to 0.01 meters.

e The minimum wetting velocity Umin has no significant effect on the behavior of the
model under these conditions.

e Accuracy and mass balance improve as the spatial resolution is refined. However, a
stability restriction prevents simulations with grid spacings of 100 meters and 120
meters from being run with the same time step of 10 seconds.

Future work will focus on other domains, such as an idealized grid with a quadratic
bathymetry and a realistic domain based on a slice of the Beaufort Inlet in North Carolina,
and alternative error measures, such as least squares. Through a better understanding of
the behavior of ADCIRC’s wetting and drying algorithm, we hope to offer a guideline for
spatial resolution in near-shore areas.
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