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Abstract

Hydrodynamic models are used for a variety of purposes, such as the modeling of

hurricane storm surges, the study of tidal circulation patterns, and the planning of naval

fleet operations.  One such hydrodynamic model is ADCIRC (ADvanced CIRCulation),

which was developed more than 20 years ago and has been refined continuously by

researchers across North America.  ADCIRC is based on the shallow water equations and

includes many of the features necessary to model complex hydrodynamic systems.

However, some of these features were implemented in an attempt to solve specific

problems, and their behaviors were never rigorously assessed.  For instance, the model

uses a wetting and drying algorithm to simulate the ebb and flow of tides in coastal

regions.  This behavior is important in many applications, and it must be modeled

correctly.  This research thesis will: (1) refute an attack on the usefulness of the finite

volume method for computing mass balance errors, (2) lay the groundwork for a future

study that will automate the placement of grid points based on a minimization of local

mass balance error, (3) implement and assess the wetting and drying algorithm in one-,

two-, and three-dimensional versions of the ADCIRC model, (4) identify a set of optimal

parameters for wetting and drying simulations, (5) prove that recent updates to the wetting

and drying algorithm were beneficial, and (6) show that smaller mass balance errors are

obtained when they are computed for each vertical element in the water column.



1.  Introduction

Shallow water equations are used by researchers and engineers to model the

hydrodynamic behavior of oceans, coastal areas, estuaries, lakes and impoundments [12].

The finite element solutions of these equations have been improved by two related

equations: the wave continuity equation (WCE), introduced by Lynch and Gray [19] to

suppress the spurious oscillations inherent to the primitive equations without having to

dampen the solution either numerically or artificially; and the generalized wave continuity

equation (GWCE), introduced by Kinnmark [11] to allow a balance between the primitive

and pure wave forms of the shallow water equations by using a weighting parameter G.

The finite element model used in this paper, ADCIRC, was developed from the GWCE

[16, 26].

One area where ADCIRC and other hydrodynamic models may have problems

(such as accuracy and mass balance) is wetting and drying.  Large-scale water behavior is

often driven by wind and tides; for the latter, the most notable is the M2 tide caused by the

gravitational effects of the moon.  Where the tides meet a sloping shoreline, the water

should move up and down the beach, causing areas to alternate between being wet and

dry.  Simply ignoring this behavior and treating the shoreline as a firm boundary, as was

done in early versions of ADCIRC, allows the water to build up on boundary nodes as if

against a vertical wall.  Not only is this method qualitatively incorrect, it also affects the

manner in which waves reflect.
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To simulate wetting and drying in a numerical model, researchers have employed

several methods.  Some models allow the wet/dry interface to advance and recede

naturally, so that the grid is not fixed in space [14].  However, this approach requires

extensive knowledge of the bathymetry along the coastline, and it is not consistent with

ADCIRC’s fixed grid approach.  Some models allow elements to wet and dry gradually, so

that an element could be half-wet and half-dry [2].  This approach does allow for a fixed

grid, but it requires extensive changes to the current computational algorithm.  Finally,

some models add a layer of porous medium at the bottom of the water column, so that dry

elements can drain naturally [9].  However, this approach is inconsistent with the

underlying physics assumed by the hydrodynamic ADCIRC model.

The ADCIRC wetting and drying algorithm turns on and off elements as they are

wetted and dried.  The algorithm was developed by Luettich and Westerink [17, 18] and is

based on simplified physics and some empirical rules.  In general terms, the algorithm

uses a minimum depth to dry nodes and a simple momentum balance to wet nodes.  As

nodes are wetted and dried, they are included and excluded from the calculations,

respectively, so that the problem size can change during each time step.  This algorithm

was implemented in the two-dimensional version of ADCIRC and proved adequate in

many problems.

The primary concern of this thesis is the implementation of the wetting and drying

algorithm in the three-dimensional version of ADCIRC.  Three-dimensional simulations

have become increasingly practical as computer architectures become faster and more

efficient.  And, in most applications of the model (such as storm surges for southern

Louisiana or tidal forecasts for the U.S. Navy), the near-shore behavior is most important.
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Thus, a three-dimensional version of ADCIRC with wetting and drying would be

beneficial.

Before its implementation in the three-dimensional version of ADCIRC, the

algorithm must be rigorously assessed.  One method of assessment is to compare model

results with an analytical solution.  Some researchers [25, 23] have presented analytical

solutions for oscillations in a parabolic basin, but these solutions make for poor

comparisons with a numerical model that incorporates bottom friction and thus dampens

the oscillations over time.  Other analytical solutions are for special atmospheric

conditions, such as tsunamis [15].  The classic analytical solution for wave run-up on a

sloping beach was first expressed by Carrier and Greenspan [3] and later revisited by

Johns [10] and Siden and Lynch [24].  The solution is quite restrictive; it describes the

behavior of a frictionless wave on a linearly-sloped beach.  On the other hand, ADCIRC

must be run with bottom friction to obtain stable results, and we would like to use it on

complex geometries.  However, because this analytical solution is forced at the ocean

boundary, its qualitative behavior does not change dramatically when a relatively small

bottom friction is introduced, unlike the parabolic basin solution.  Thus, the analytical

solution can be a useful tool for one-dimensional problems, and it can be extended to two-

and three-dimensional problems.

Another method of assessment is computing mass balance error.  Mass balance is

especially important in wetting and drying applications because large areas of water are

added and subtracted from the computational domain.  However, there has been some

recent discussion in the literature about how best to compute mass balance.  A few papers

[1, 8] have advocated computing mass balance from finite element residuals in order to be
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consistent with the numerical discretization.  However, it has been shown [13] that the

finite volume approach can be a good surrogate variable for accuracy and phasing errors;

that is, small mass balance errors (as computed using a finite volume approach) correlate

with small constituent errors.  This thesis will continue that argument by conducting a

truncation error analysis, in an attempt to show that areas with significant truncation errors

also have significant mass balance errors.

Chapter 2 contains this truncation error analysis.  Using four test domains, we

compare the mass balance errors computed by both the finite volume and finite element

methods with the truncation errors from the governing equations.  We find that the

correlation between finite volume mass balance errors and truncation errors depends on

node spacing, but it is particularly strong for grids that have constant spacing.  Thus,

because most of our test domains have constant spacing, the wetting and drying studies

will calculate mass balance errors using a finite volume approach, where we compute the

difference between the global accumulation and the global mass flux on an element-by-

element basis, as represented by the primitive continuity equation.

Chapter 3 presents the results from our analysis of the one-dimensional wetting

and drying algorithm.  Using four test domains and two error measures, we subjected the

algorithm to a variety of tests including heuristic stability, numerical sensitivity, and

convergence.  We find that the current algorithm works very well, but it imposes stability

constraints and it requires careful selection of input parameters.  Note that this work was

completed during the 2003-2004 academic year as part of my Honors’ senior thesis; we

include it herein for completeness.
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Chapter 4 presents the results from our implementation and analysis of the two-

dimensional (x-z) wetting and drying algorithm.  We chose to analyze the algorithm in two

dimensions before moving into three dimensions because: (1) by adding only one extra

dimension at a time, we were able to control the number of new model parameters and

assess the model’s behavior in stages; and (2) by utilizing the speed of the two-

dimensional model, we could better analyze updates to the wetting and drying algorithm

that were added after the one-dimensional studies in Chapter 3 were completed.  We will

show that these updates improve the behavior of the algorithm, to where it produces

results that are similar to those in Chapter 3.

Chapter 5 presents the results of our implementation and analysis of the three-

dimensional wetting and drying algorithm.  We will discuss how the wetting and drying

algorithm was implemented in the three-dimensional ADCIRC model, and we will discuss

the results of a series of numerical experiments conducted on it.  We will show that it is

possible to simulate three-dimensional wetting and drying.  We will also show that the

same optimal set of model parameters applies in three dimensions as did in lower

dimensions.

Chapter 6 presents our conclusions, including a detailed description of a set of

optimal parameters for wetting and drying simulations.  Chapter 7 lists the references cited

in this thesis.  And Appendix A presents the truncation error terms that formed the basis of

the study in Chapter 2.
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2.  Truncation Errors and Mass Balance

Before we begin our studies of the wetting and drying algorithm, it is important to

develop error measures with which we can assess it.  One such measure is mass balance

error, which becomes important in wetting and drying applications where regions of the

computational domain are added and subtracted as the tide inundates and recedes,

respectively.  Traditionally, mass balance error can be computed by using what can be

called the finite volume method, but a few recent papers have suggested that another

method is more appropriate for finite element models, such as ADCIRC [1, 8].  We will

show that the finite volume method is more realistic and more descriptive of the overall

behavior of the model, by comparing the two methods to compute mass balance with each

other and with the truncation errors produced through the discretization of the governing

equations.

2.1.  Introduction

The mass balance properties of hydrodynamic models have been examined

traditionally by using the finite volume approach, where the difference between the global

accumulation and the global mass flux is computed on an element-by-element basis, as

represented by the primitive continuity equation.  For many applications, this difference is

insignificant, but some finite element models can show significant local mass balance
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errors in complex applications, such as regions with rapidly converging/diverging flow or

regions where large areas of water are added and subtracted from the computational

domain during wetting and drying [13].  The existence of these errors is sometimes used

as proof that finite element models are inferior to staggered finite difference methods,

which naturally conserve mass at the element level.

Recent literature has questioned the validity of the finite volume approach for

computing mass balance, instead advocating an algorithm based on the computation of

mass balance from finite element residuals in order to be consistent with the numerical

discretization [1,8].  We will show that the finite element approach produces insignificant

mass balance errors for all simulations, even in applications that are obviously incorrect.

In other words, the finite element approach is not a good indicator of other problems with

the model.  On the other hand, it has been demonstrated through applications that the finite

volume approach produces mass balance errors that can be good surrogates for accuracy

and phasing errors; that is, small mass balance errors correlate with small constituent

errors and vice versa [13].  In fact, Berger et al. [1] mentioned this hypothesis, by noting

that an error measure, such as the finite volume approach, could be useful as an “error

indicator,” even if it is not a good measure of the mass balance errors generated from the

finite element residuals.

The notion of using errors to discern the behavior of a the model is not new.

Gresho and Lee [5] argued that oscillatory solutions are “good” in that they provide

motivation for re-examination of boundary conditions, geometry, and problem

formulation.  In fact, the work herein continues and builds upon that argument.  The

existence of these mass balance errors is not ideal, but they can provide information about
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the behavior of the model and about how to cut the error via techniques such as grid

refinement, as discussed below.  Thus, although disagreement exists over the validity of

the finite volume approach, it may be useful in other ways.  For example, if mass balance

errors are correlated to truncation errors, then mass balance errors can be used as a

diagnostic tool [4].

We will test this correlation by conducting a one-dimensional truncation error

analysis, in which the truncation error associated with each term in the shallow water

equations will be computed.  If the areas that have significant truncation errors coincide

with the areas that have significant mass balance errors, then the finite volume approach to

compute local mass balance error can be used as an indicator of the spatial distribution of

truncation errors.  Because mass balance is relatively easy to compute, it could be used as

an error estimator of sorts, identifying which areas of the grid may need more refinement.

This analysis will be conducted using the ADvanced CIRCulation (ADCIRC) family of

models [16].

In the next subsection, we will discuss how we developed the truncation error

terms (which are presented in Appendix A), and we will establish four model problems in

which we will compare the truncation errors and the mass balance errors.  Then, in four

subsections, we will present and discuss the results from the four model problems.  Using

those results, we will walk through the development of a computational mesh based on the

minimization of mass balance error.  Finally, we will share conclusions and

recommendations based on this study.
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2.2.  Methods

In this subsection, we discuss the two methods to compute mass balance errors, the

methods used to develop and compute the truncation error terms, and the model problems

that we will use to conduct the truncation error analysis.

2.2.1.  Mass Balance

To compute mass errors, we examine a simple balance between flux and

accumulation within each element.  Accumulation is relatively easy to compute, but there

has been some recent disagreement about how best to compute flux.  In this study, we

compare two methods: finite volume and finite element.

The first method to compute mass balance is the traditional finite volume

approach, where fluxes are obtained through an integration of the primitive continuity

equation.  Integrating over space and time gives:

, (2.1)

where  is water surface elevation from the mean, H is total water depth, u is velocity, 

is a 2D element for a local mass computation, and t is time.  We integrate the first term

over time and apply the divergence theorem to the second term to get:

, (2.2)

t∂
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∂Ω[ ] td

t0

t
+ 0=
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where the first term represents accumulation and the second term represents net flux.

Linear interpolation of the accumulation term and integration of the flux term allow us to

simplify this equation to:

, (2.3)

where  is the arithmetic average of the nodal values of  over the element, A is the area

of the element,  is the net flux, and k is the time index.  In higher dimensions, the flux

calculation is a boundary integral, and the net flux is the sum of the fluxes on the faces of

the element.  For the one-dimensional ADCIRC used in this chapter, the flux at any node j

boils down to:

, (2.4)

where q is the flux, H is the total water depth, and u is the velocity.  Thus, at any node in

the domain, the flux becomes the product of the total water depth and the velocity.  The

mass balance over a one-dimensional element, then, uses an interior accumulation and the

fluxes from the two nodes that define it.

The second method to compute mass balance will be referred to as the finite

element approach, and it involves solving for fluxes that are consistent with the finite

element formulation.  According to Hughes et al. [8] and Berger and Howington [1], this

method yields fluxes that are locally mass-conservative, provided the equations are solved

correctly.  Because the formulation is applied on an element-by-element basis, each one-

dimensional element will have two fluxes: one for the left element boundary, and one for

the right element boundary.  Thus, there are two distinct fluxes associated with each node,
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2
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ζ ζ

qnet

qj Hjuj=
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as shown in Figure 2.1.  The fluxes do not have to be the same across a node; in fact, the

flux discontinuities are what allow the finite element method to be locally conservative.

This behavior could be used as an error indicator in one dimension, but not in higher

dimensions because then finite volume fluxes are defined over contiguous faces, making it

difficult to extract nodal values.

For the one-dimensional ADCIRC model, the finite element approach can be

applied to two equations: the primitive continuity equation, and the generalized wave

continuity (GWC) equation.  We applied the approach (similar to Massey [20]) to both

equations and compared their mass balance properties.  Except for a few rare cases, the

two equations produced finite element residuals that were nearly identical.  In this thesis,

we will present only the results from the finite element approach applied to the GWC

equation, so that our equations are consistent with the ADCIRC model.  Thus, the flux on

the left boundary of any element is given by:

(2.5)

Figure 2.1.  A schematic of the fluxes produced by the finite
element method of computing mass balance.  Each element
has fluxes at the left and right boundaries; thus, each node is
associated with two distinct fluxes, giving rise to the possi-
bility of flux discontinuities.
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,

and the flux on the right boundary of any element is given by:

(2.6)
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,

where: q is flux;  is the water surface elevation from the mean; H is the total water depth;

 is the average bathymetry in the element; u is the velocity; k is the time index; L and R

denote the left and right boundaries of the element, respectively;  is the time step;  is

the length of the element; G is a numerical parameter;  is eddy viscosity; and g is

acceleration due to gravity.

Notice the difference between the finite volume flux given in Equation 2.4 and the

finite element fluxes given in Equation 2.5 and Equation 2.6.  Not only is the finite volume

flux significantly less complex, it also makes physical sense.  The same cannot be said for

the finite element fluxes.  Thus, although the finite element fluxes may be a good indicator
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of whether the finite element formulation is being solved correctly, it is not obvious how

they relate to the physical domain.

2.2.2.  Development of Truncation Error Terms

ADCIRC is based on two governing equations: the GWC equation, and either the

nonconservative form (NCM) or the conservative form (CM) of the momentum equation

[16].  In one dimension, the GWC equation is given by:

, (2.7)

the NCM equation is given by:

, (2.8)

and the CM equation is given by:

, (2.9)

where the variables are defined above.  The discrete forms of the equations are generated

by using linear finite elements for the spatial discretization and a Crank-Nicholson scheme

on the linear terms for the temporal discretization.  The nonlinear terms in the equations

employ an explicit formulation.  We utilize exact quadrature rules and an L2 interpolation

for the advective terms.
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To evaluate the truncation error for each term in these three governing equations,

we utilize Taylor series expansions.  After the dependent variables are expanded about a

common node point, j, the results are subtracted from the continuous equations in order to

obtain the truncation error.  In the evaluation of the truncation errors, we employ

Mathematica to expand the Taylor Series to the seventh order terms; however, we report

errors herein only to second order.  Also, the truncation errors were computed at interior

nodes only; we used centered difference approximations, which cannot be formulated at

boundary nodes.

The truncation errors are presented in Appendix A.  Using these truncation errors,

it can be shown that the GWC equation is first-order accurate in time if the advective

terms are in non-conservative form, and that it is second-order accurate in time if the

advective terms are in conservative form.  In space, the GWC equation is first-order

accurate for variable spacing, and it is second-order accurate for constant spacing.  The

NCM and CM equations are first-order accurate in time and space if we use variable

spacing, and they are second-order accurate in space if we use constant spacing.  Also,

both momentum equations become second-order accurate in time if the equations are

linearized.  These findings are described in detail in Dresback et al. [4].

2.2.3.  Evaluation of Truncation Error Terms

Evaluation of the truncation error terms requires information from both fine and

coarse grid solutions.  The derivatives in each of the truncation error terms were evaluated

using information from a fine grid solution.  For instance, the first term in the GWC
15



equation is the time derivative term, , and the second term in its truncation error

expression is:

, (2.10)

where  is the water surface elevation from the mean, j is the space index, and k is the

time index.

To approximate all derivatives, we use second-order central difference schemes on

the fine grid solution.  For example, for the derivative in Equation 2.10, we used a two-

level centered difference scheme in space and a five-level centered difference scheme in

time:

, (2.11)

where the water surface elevations, grid spacing, and time step in Equation 2.11 come

from a fine grid (“true”) solution, which was obtained by refining the grid until the

solution converged to the sixth decimal place.  We use similar centered finite difference

approximations to evaluate all of the derivatives in the truncation error terms.  Thus,

because the highest derivative in either space or time is fourth order, we need to save

output from five consecutive time steps.

The rest of the truncation error term part shown in Equation 2.10 is evaluated using

information from a coarse grid solution, namely, a coarse grid spacing and a coarse time
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step.  Note that we do not need to save output for any of the dependent variables in a

coarse grid simulation to compute the truncation error; all we need are the values of the

independent variable increments: time step and grid spacing.  Thus, the truncation errors

were computed using the following procedure:

• A fine grid simulation was developed, in order to obtain a true solution.  The

parameters of these simulations are described in Section 2.2.4.

• Each truncation error term was evaluated independently, using the fine grid

data to evaluate the derivatives, and the coarse grid data to evaluate the

increments of time step and grid spacing.

• The behavior of each truncation error term was examined.  Additionally, the

truncation error terms for each equation were summed to produce overall

truncation errors.

• The truncation errors were compared with the mass balance errors, from both

the finite volume and the finite element approaches, as computed from the

coarse grid simulation.

Note the distinction between “coarse” and “fine” in Equation 2.10.  For all of the

truncation error terms, the fine component is the derivative part of the term.  It is

independent of discretization, and thus fixed for any grid.  And, it is evaluated by using a

true solution, which in our case is a fine grid solution that remains the same for all coarse

discretizations.  Figure 2.2 shows only the fine components of the truncation errors for one

equation in one domain.  Note that the value of the fine component varies throughout the

domain; it is at its maximum in the area of interest, as we will discuss below.  Regardless
17



of the coarse grid that is used in this domain, these values from the fine components will

persist.

On the other hand, the coarse component of each truncation error term is

dependent on the discretization and other user-selected parameters.  This component can

be manipulated.  In fact, as we will discuss later, some grids are designed to minimize the

coarse component in regions where the fine component is large (and vice versa), so that

the overall truncation error is uniform throughout the computational domain.

The behavior of the truncation errors and their comparison with the mass balance

errors are discussed in Section 2.3 through Section 2.6.  Before that discussion, though, we

will present the model problems on which these analyses were performed.
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2.2.4.  Model Problems

The first three model problems are based on a one-dimensional slice of the

Western North Atlantic grid; we will refer to this as the East Coast domain.  The slice is

shown in Figure 2.3.  Note that the bathymetry is deep throughout much of the domain,

but it rises steeply and forms a plateau near the closed land boundary.  Historically, mass

balance errors manifest themselves in areas with rapidly changing bathymetry where the

flow converges or diverges [13].  Thus, this domain should be a good test of the model’s

mass balance and truncation error properties.

The fine grid solution for this domain has a grid spacing of about 800 feet, which

corresponds to 8,193 nodes.  Other simulation parameters include: a time step of 1 second,

a simulation time of 3.24 M2 tidal cycles (or 40.24 hours), a constant bottom friction of

200 400 600 800 1000 1200
Distance, mi

-3

-2.5

-2

-1.5

-1

-0.5

0

htpe
D

,
i

m

East Coast Bathymetry

Figure 2.3.  Bathymetry for the first three
model problems.  Note that the bathymetry is about 3 miles at the open
ocean boundary, and it rises steeply toward a plateau as it approaches the
19



0.0001, and a G value of 0.001 sec-1.  The elevation and velocity outputs were saved for

the last five time steps and used to compute the truncation error terms.  (Recall that the

truncation errors depend on the fine grid solution; the only input from the coarse grid

solution is the coarse grid and time step.)

The first model problem has a constant grid spacing.  To compute the truncation

errors, we used a coarse grid spacing of 103,526 feet, which corresponds to 65 nodes and a

 ratio of about 40 in the shallowest waters.   (The  ratio relates the wave

celerity, forcing period, and grid resolution; larger ratios correspond to better resolution.)

The second model problem uses the same East Coast bathymetry, but with a

variable spacing based on a  ratio of about 125.  This coarse grid has 46 nodes, and

its grid spacing ranges from about 250,000 feet in the deep water to about 26,000 feet on

the shelf.  The fine grid remains the same, and so do the rest of the parameters listed

above.

The third model problem also uses the East Coast bathymetry, but with a variable

spacing developed with a localized truncation error analysis (LTEA) [6,7]. The LTEA

method places node points based on the truncation errors associated with the discrete

equations, and it has been show to improve both accuracy and efficiency. This coarse grid

also has 46 nodes, although they are placed differently than for the East Coast ( )

domain, and its grid spacing ranges from about 370,000 feet in the deep water to less than

5,000 feet on the shelf.  Again, the fine grid remains the same, and so do the rest of the

parameters listed above.  Figure 2.4 shows how the nodes are placed for the three East

Coast domains.  Note how the LTEA method clusters nodes along the shelf break at the

distance of about 1,100 miles.

λ Δx⁄ λ Δx⁄

λ Δx⁄

λ Δx⁄
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The fourth model problem is a one-dimensional wetting and drying simulation; we

will refer to this as the Linear Sloping Beach domain.  This domain is shown in Figure 2.5.

For the fine grid solution, we used a grid spacing of 50 meters, which corresponds to 481

nodes; for the coarse grid solution, we used a grid spacing of 500 meters, which

corresponds to 49 nodes.  Other simulation parameters include: a time step of 1 second, a

simulation time of 4 M2 tidal cycles (or 48 hours), a constant bottom friction of 0.0001,

and a G value of 0.01 sec-1.  To calculate the truncation errors, we saved the elevation and

velocity outputs for the last five time steps.  Note that, at this time in the simulation, the

interface between wetting and drying is at a distance of about 18 kilometers.

We will present the results from these four model domains over the next four

subsections.  For each domain, we tested two forms of the one-dimensional ADCIRC

1000 1050 1100 1150 1200
Distance, mi

Distributionof Node Points

Figure 2.4.  Distribution of node points
in the last 250 miles of the East Coast domain for the three discretizations.
The red line is the constant grid spacing, the blue line is the variable ( )
spacing, and the green line is the variable (LTEA) spacing.  Note how the
LTEA method clusters nodes along the shelf break at the distance of about

λ Δx⁄
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model: the non-conservative form and the conservative form.  The former uses the non-

conservative form of the advective term in the GWCE, which is used to solve for water

surface elevations, and the non-conservative form of the momentum equation, which is

used to solve for velocities.  The latter uses the conservative form of the advective term in

the GWCE, which is used to solve for water surface elevations, and the conservative form

of the momentum equation, which is used to solve for fluxes.  Note the difference in

dependent variables between the two forms of the momentum equation; the non-

conservative form solves for velocities, while the conservative form solves for fluxes.  To

compare truncation errors in this paper, we will divide the truncation errors from the

conservative form of the momentum equation by the water depth, so that the units are

consistent.  Thus, for each of the four domains, we will show mass balance and truncation
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Figure 2.5.  Bathymetry for the Linear Slop-
ing Beach domain.  The solid black line is the bathymetry, and the solid
blue and red lines are the wet and dry regions, respectively, of the grid at
the point in time when we calculate the truncation errors.  Note that the
wet/dry interface is at a distance of about 18 kilometers.
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error results for both forms.  Table 2.1 presents a summary of the model domains, error

measures, and their corresponding sections.

2.3.  East Coast (Constant) Domain

The East Coast bathymetry was selected because its shelf break is a robust test of

both mass balance errors and truncation errors.  In this subsection, we focus on a version

of this domain that has constant node spacing, and we present the results for both the non-

conservative and conservative forms of the governing equations.  For both forms, the

results indicate that finite volume mass balance errors are a good indicator of truncation

errors.

Table 2.1: Summary of test domains, error measures, and where their
results are reported.  Thus, within each section, we will present six sets of
results: three for the non-conservative forms of the governing equations,
and three for the conservative forms.  Note that “T.E.” stands for
truncation error.

Error Measure

Non-Conservative Conservative

Mass 
Balance

GWCE 
T.E.

NCM
T.E.

Mass 
Balance

GWCE
T.E.

CM
T.E.

Domain

East Coast
(Constant) Section 2.3.1 Section 2.3.2

East Coast
( ) Section 2.4.1 Section 2.4.2

East Coast
(LTEA) Section 2.5.1 Section 2.5.2

Linear Sloping
Beach Section 2.6.1 Section 2.6.2

λ Δx⁄
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2.3.1.  Non-Conservative Form

Herein, we present the mass balance errors, truncation errors for the non-

conservative form of the GWCE, and truncation errors for the non-conservative

momentum equation.  These errors will be shown in graphical form in the following

subsections; however, it is important to remember the big picture when making these

comparisons.  Thus, Table 2.2 presents a summary of the truncation errors for every term

in the equation and their relationships with the finite volume mass balance errors.  (The

governing equations are presented in Section 2.2.2 and Appendix A.)  As will be shown,

the finite volume method of computing mass balance errors is a good indicator of

truncation errors, and we have tried to summarize that idea in the last column of Table 2.2.

We will discuss this behavior in more detail when we present the truncation errors in

Section 2.3.1.2 and Section 2.3.1.3, but first we will present the mass balance errors

computed by the finite volume and finite element methods.

2.3.1.1.  Mass Balance Errors

Figure 2.6 shows the mass balance errors for the coarse grid simulation, and Figure

2.7 shows an expanded view in the vertical scale to highlight the finite element mass

balance errors.  The units of mass balance error are square feet.  Note that, in both figures,

the finite volume method shows significant non-zero errors where the flow accelerates up

the continental slope.  It is only when the vertical scale is exaggerated in Figure 2.7 that

significant finite volume residuals become evident in other parts of the domain.  The finite

element method shows residuals that are six to eight times smaller in magnitude, and these
24



residuals do not change as dramatically in the shelf break region.  Thus, the residuals from

the finite volume method are much more sensitive to bathymetry changes.

Table 2.2: Summary of truncation errors for the non-conservative form of
the ADCIRC model, for the East Coast (Constant) domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are feet/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.10)

7.0E-02 Yes

First
(Figure 2.8)

1.2E-05 No

Second 1.5E-08 No

Finite Amplitude, Part 1
(Figure 2.9)

5.0E-02 Yes

Finite Amplitude, Part 2 1.2E-04 Yes

Advective, Part 1 1.7E-06 Yes

Advective, Part 2 2.5E-02 Yes

Flux 5.0E-04 Yes

Viscous 0.0E+00

NCM
(Figure 2.12)

4.0E-03 Yes

Accumulation 4.5E-05 Yes

Advective
(Figure 2.11)

1.2E-03 Yes

Bottom Friction 1.0E-03 Yes

Finite Amplitude 2.0E-03 Yes

Viscous 0.0E+00
25



0 200 400 600 800 1000 1200
Distance, mi

-300

-200

-100

0

100

200

laudise
R

,
2tf

Mass Balance

Figure 2.6.  Mass balance residuals for the
coarse grid simulation, for the East Coast (Constant) domain and the non-
conservative form of ADCIRC.  The red line shows the residuals from the
finite volume method, and the blue line shows the residuals from the finite
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Figure 2.7.  An expanded view of the mass balance residuals for the coarse
grid simulation, for the East Coast (Constant) domain and the non-conser-
vative form of ADCIRC.  The red line shows the residuals from the finite
volume method, and the blue line shows the residuals from the finite ele-
ment method.
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2.3.1.2.  Truncation Errors for the GWC Equation

We evaluated each truncation error term for every interior node in the model

domain.  However, instead of showing a graph for all nine of the GWC truncation error

terms (and all five of the non-conservative momentum terms), we will present graphs that

are representative of all of the terms.  Then, we will present a graph with the combined

truncation errors.

Figure 2.8 shows the truncation errors for the first term, , in the GWC

equation.  Note the vertical scale, which ranges from a minimum of about zero to a

maximum of about 0.000012 feet/sec2.  As shown in Table 2.2, this term and the second

GWCE truncation error term are the only ones that show random noise over the domain;

most of the rest of the terms show truncation errors that are larger in magnitude, and all of
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Figure 2.8.  Absolute values of the trunca-
tion errors for the first term in the GWC equation, for the East Coast (Con-
stant) domain.  Note that the units of truncation error are feet/sec2.
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the other terms show significant truncation errors in the region where the steep slope

occurs.  For instance, Figure 2.9 shows the truncation errors for the first part of the finite

amplitude term, , in the GWC equation.  The truncation errors are

insignificant everywhere except in the steep slope region.  Also, the maximum truncation

errors in Figure 2.9 are more than three orders of magnitude larger than those in Figure

2.8.  Most of the rest of the truncation error terms produce graphs similar to Figure 2.9,

with a significant maximum in the region with the steepest slope.

The truncation errors can be combined to produce a single graph, as in Figure 2.10.

The total truncation error shown is computed as a sum of the absolute values of the

truncation errors for each of the terms in the non-conservative GWC equation.  Note the

significant maximum at a distance of about 1,100 miles, which corresponds to the region

in Figure 2.6 where the finite volume mass balance errors are significant.  In this case, the
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Figure 2.9.  Absolute values of the trunca-
tion errors for the first part of the finite amplitude term in the GWC equa-
tion, for the East Coast (Constant) domain.  Note that the units of
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finite volume mass balance errors are a good predictor of truncation errors.  For the GWC

equation in the other test domains, we will show only these cumulative graphs, for both

the conservative and non-conservative terms.

In summary, many of the individual truncation error terms and the sum of the

truncation errors all show significant errors in the region where the finite volume mass

balance errors were greatest, as indicated in Table 2.2.

2.3.1.3.  Truncation Errors for the NCM Equation

Again, instead of showing the individual truncation error graphs for all five of the

terms in the NCM equation, we will show a representative graph before moving forward

to the cumulative graphs.  Figure 2.11 shows the truncation errors for the advective term,
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Figure 2.10.  Absolute values of the trun-
cation errors for all of the terms in the non-conservative GWC equation, for
the East Coast (Constant) domain.  Note that the units of truncation error
are feet/sec2.  Also note that the significant maximum at a distance of 1,100
miles corresponds to the region with the steepest slope.
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, in the NCM equation.  As in Figure 2.9, this graph shows significant

truncation errors only near the boundaries and in the region with the steepest slope.  This

trend is repeated for almost all of the other terms in the NCM equation, with the lone

exception being the viscous term, because it was not used in this simulation..  The largest

truncation errors occur in the region with rapid bathymetry changes.  Figure 2.12 shows

the sum of the absolute values of the truncation errors for the five terms.  Again, the

largest truncation errors occur in the region with rapid bathymetry changes.
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Figure 2.11.  Absolute values of the trun-
cation errors for the advective term in the NCM equation, for the East
Coast (Constant) domain.  Note that the units of truncation error are feet/
sec2.  Also note that the significant maximum at a distance of 1,100 miles
corresponds to the region with the steepest slope.
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2.3.2.  Conservative Form

In this subsection, we will present and discuss the results for the conservative form

of the ADCIRC model.  Table 2.3 summarizes these results.  Once again, the finite volume

mass balance errors are a good indicator of truncation errors.

2.3.2.1.  Mass Balance Errors

Figure 2.13 shows the mass balance errors for the conservative form of the one-

dimensional ADCIRC model, and Figure 2.14 shows a close-up of those same mass

balance errors.  Note that the conservative forms of the GWC equation and the momentum

equation greatly reduce the mass balance errors, as computed by the finite volume

method, in the region of rapid bathymetry changes.  The maximum finite volume mass
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Figure 2.12.  Absolute values of the trun-
cation errors for all terms in the NCM equation, for the East Coast (Con-
stant) domain.  Note that the units of truncation error are feet/sec2.  Also
note that the significant maximum at a distance of 1,100 miles corresponds
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balance error for the non-conservative forms in Figure 2.6 was about 200 ft2, but the

conservative forms reduce the error in that region to about 0.2 ft2.  Nevertheless, these

finite volume mass balance errors are several orders of magnitude greater than the finite

element mass balance errors shown in Figure 2.14.  Also note that, although the finite

 

Table 2.3: Summary of truncation errors for the conservative form of
the ADCIRC model, for the East Coast (Constant) domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are feet/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.15)

1.0E-01 Yes

First 1.2E-05 No

Second 1.5E-08 No

Finite Amplitude, Part 1 5.0E-02 Yes

Finite Amplitude, Part 2 1.2E-04 Yes

Advective 5.0E-02 Yes

Flux 5.0E-04 Yes

Viscous 0.0E+00

CM
(Figure 2.17)

2.0E-04 Yes

Accumulation 1.4E-06 No

Advective
(Figure 2.16)

9.0E-05 Yes

Bottom Friction 4.0E-05 Yes

Finite Amplitude, Part 1 8.0E-05 Yes

Finite Amplitude, Part 2 2.0E-07 Yes

Viscous 0.0E+00
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Figure 2.13.  Mass balance residuals for
the coarse grid simulation, for the East Coast (Constant) domain and the
conservative form of ADCIRC.  The red line shows the residuals from the
finite volume method, and the blue line shows the residuals from the finite
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Figure 2.14.  An expanded view of the mass balance residuals for the
coarse grid simulation, for the East Coast (Constant) domain and the con-
servative form of ADCIRC.  The red line shows the residuals from the
finite volume method, and the blue line shows the residuals from the finite
element method.
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volume mass balance errors near the left boundary in Figure 2.13 appear large, they are of

the same magnitude as the errors near the ocean boundary in Figure 2.6.  The conservative

forms of the equations only affect the finite volume mass balance errors in the region with

rapid bathymetry changes.

2.3.2.2.  Truncation Errors for the GWC Equation

Figure 2.15 shows the absolute values of the truncation errors for all of the terms in

the conservative GWC equation.  This figure has a similar shape to that of Figure 2.10, in

that the significant truncation errors occur in the same region of the domain.  However, the

conservative form of the equations increases the magnitude of the maximum GWCE

truncation error by about 40 percent, from about 0.07 feet/sec2 to about 0.1 feet/sec2.
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Figure 2.15.  Absolute values of the trun-
cation errors for all of the terms in the conservative GWC equation, for the
East Coast (Constant) domain.  Note that the units of truncation error are
feet/sec2.  Also note that the significant maximum at a distance of 1,100
miles corresponds to the region with the steepest slope.
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(This difference can also be seen by comparing the “GWCE” rows in Table 2.2 and Table

2.3.)  The finite volume mass balance errors and truncation errors still occur in the same

place, but their magnitudes are going in different directions, i.e., the finite volume mass

balance errors are decreasing, while the truncation errors are increasing.

2.3.2.3.  Truncation Errors for the CM Equation

As with the NCM equation in Section 2.3.1.3, the only individual term we will

show is the truncation error graph for the advective term, which in this case is .

Figure 2.16 shows those truncation errors.  Note that this term shows similar error

behavior to most of the truncation error terms described above, in that there exists a clear

maximum at the shelf break.  Also note the difference in magnitude between the

truncation errors associated with the CM advective term in Figure 2.16 and those

∂ qu( ) ∂x⁄
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Figure 2.16.  Truncation errors for the
advective term in the CM equation, for the East Coast (Constant) domain.
Note that the units of truncation error are feet/sec2.  Also note that the sig-
nificant maximum at a distance of 1,100 miles corresponds to the region
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associated with the NCM advective term in Figure 2.11; the conservative formulation

decreases the magnitude by about a factor of ten.  This behavior is consistent with other

studies involving the form of the momentum equation [4].  Most of the rest of the terms in

the CM equation show similar truncation error behavior to that of the advective term; the

lone exception is the viscous term.

Figure 2.17 shows the sum of the absolute values of all terms in the CM equation.

Note that the magnitude of the truncation errors shown in Figure 2.17 (about 9.0E-05 feet/

sec2) is smaller than those in the corresponding Figure 2.12 (about 4.0E-03 feet/sec2) for

the NCM equation.  The conservative formulation does decrease the truncation errors, but

the maximum still occurs along the shelf break.
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Figure 2.17.  Absolute values of the trunca-
tion errors for all terms in the CM equation, for the East Coast (Constant)
domain.  Note that the units of truncation error are feet/sec2.  Also note that
the significant maximum at a distance of 1,100 miles corresponds to the
region with the steepest slope.
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2.4.  East Coast ( ) Domain

The second version of the East Coast Domain used a variable spacing based on a

 ratio of 125, as described above in Section 2.2.4 and Figure 2.4.  As with the

constant spacing version in Section 2.3, we will present and discuss the mass balance and

truncation error results for both the non-conservative and conservative versions of the

one-dimensional nonlinear ADCIRC model.

2.4.1.  Non-Conservative Form

In this subsection, we will present and discuss the mass balance results, the

truncation errors for the non-conservative form of the GWC equation, and the truncation

errors for the non-conservative momentum equation.  Table 2.4 summarizes these results.

Note that the variable node spacing causes many of the terms in the non-conservative

GWCE to not follow the finite volume mass balance errors; however, the NCM equation

continues to produce truncation errors that support our hypothesis.  We will discuss these

results when we present the qualitative behavior of the truncation errors, but first we

present the mass balance errors.

2.4.1.1.  Mass Balance Errors

Again, we present two figures for mass balance: Figure 2.18 shows the mass

balance residuals for the coarse grid simulation, and Figure 2.19 shows the same graph

with a refined vertical scale.  The red line shows the residuals for the finite volume

λ Δx⁄

λ Δx⁄
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method, and the blue line shows the residuals for the finite element method.  The variable

node space produces slightly different results from the corresponding Figure 2.6 and

Figure 2.7 for the constant-spacing East Coast domain, but the overall behavior is similar.

The magnitudes of both the finite volume residuals and the finite element residuals are

similar for both grids, and the horizontal positions of the maximum residuals is similar as

Table 2.4: Summary of truncation errors for the non-conservative form of
the ADCIRC model, for the East Coast ( ) domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are feet/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.20)

9.0E-05 No

First 6.0E-05 No

Second 6.0E-08 No

Finite Amplitude, Part 1 3.0E-05 No

Finite Amplitude, Part 2 6.5E-09 No

Advective, Part 1 1.2E-08 No

Advective, Part 2 2.0E-06 Yes

Flux 1.0E-06 Yes

Viscous 0.0E+00

NCM
(Figure 2.21)

6.0E-05 Yes

Accumulation 6.0E-06 No

Advective 3.0E-06 Yes

Bottom Friction 2.0E-05 Yes

Finite Amplitude 3.0E-05 Yes

Viscous 0.0E+00
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Figure 2.18.  Mass balance residuals for
the coarse grid simulation, for the East Coast ( ) domain.  The red line
shows the residuals from the finite volume method, and the blue line shows
the residuals from the finite element method.
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Figure 2.19.  An expanded view of the mass
balance residuals for the coarse grid simulation, for the East Coast ( )
domain.  The red line shows the residuals from the finite volume method,
and the blue line shows the residuals from the finite element method.
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well.  Again, the finite volume method produces residuals that are much more sensitive to

changes in bathymetry.

2.4.1.2.  Truncation Errors for the GWC Equation

Figure 2.20 shows the absolute values of the truncation errors for the non-

conservative form of the GWC equation.  Although a peak still exists at a distance of

about 1,100 miles, several similar peaks occur in the deep-water region of the domain.  To

explain this behavior, we refer again to Table 2.4 and the breakdown of the truncation

error behavior for all eight terms in the non-conservative form of the GWC equation.

Only two terms (the second part of the advective term and the flux term) show behavior

similar to that of the finite volume mass balance errors in Figure 2.18.  The rest of the

terms show significant truncation errors in all parts of the domain.  As we discussed above
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Figure 2.20.  Absolute values of the trunca-
tion errors for all of the terms in the non-conservative GWC equation, for
the East Coast ( ) domain.  Note that the units of truncation error are
feet/sec2.
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in Section 2.2.3, parameters (such as grid spacing) can be adjusted so that the truncation

errors are relatively constant throughout the computational domain.  It is this behavior that

dominates the cumulative truncation errors shown in Figure 2.20.

2.4.1.3.  Truncation Errors for the NCM Equation

Figure 2.21 shows the sum of the absolute values of the truncation errors for all of

the terms in the NCM equation.  Unlike the GWC equation, the NCM equation produces a

significant maximum in the region where the steep slope begins.  And, again in contrast to

the GWC equation, this behavior is repeated for all of the individual terms in the NCM

equation to varying degrees, with the exception of the viscous term, which was not used in

the simulation.  Even the accumulation term, although it registers as a “No” in Table 2.4
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Figure 2.21.  Absolute values of the trunca-
tion errors for all of the non-conservative terms in the NCM equation, for
the East Coast ( ) domain.  Note that the units of truncation error are
feet/sec2.  Note that there is a clear maximum at a distance of about 1,100
miles, where the steep slope begins.
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because it shows truncation errors in other parts of the domain, shows a maximum

truncation error at the shelf break that is at least twice as large as those other errors.  Thus,

every term shows a significant maximum at a distance of about 1,100 miles, where the

bathymetry changes rapidly.  The overall behavior of the NCM truncation errors repeats

this maximum, which again is similar to that for the finite volume mass balance errors.

2.4.2.  Conservative Form

In this subsection, we will present and discuss the mass balance results, the

truncation errors for the conservative form of the GWC equation, and the truncation errors

for the conservative momentum equation.  These results are summarized in Table 2.5.

With the exception of the advective terms, the same terms are used in both the non-

conservative and conservative forms of the GWCE; thus, the behavior of its truncation

errors does not change dramatically for the East Coast ( ) domain.  However, the

behavior of the truncation errors from the CM equation does change.  For the NCM

equation in Table 2.4, the bottom friction and finite amplitude terms dominated, and thus

the overall behavior of the truncation error terms followed that of the finite volume mass

balance errors.  Now for the CM equation in Table 2.5, the dominant term is the first part

of the finite amplitude term, whose behavior does not follow.  Thus, for the CM equation

and variable node spacing, the finite volume mass balance errors are not good indicators

of truncation errors.
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2.4.2.1.  Mass Balance Errors

The conservative form of ADCIRC causes a reduction in the mass balance errors.

Figure 2.22 shows the mass balance errors for the conservative form of the one-

Table 2.5: Summary of truncation errors for the conservative form of the
ADCIRC model, for the East Coast ( ) domain.  In the first column,
the names refer to terms in Appendix A.  In the second column, the units of
truncation error are feet/sec2.  The last column refers to whether the
behavior of the truncation errors matches that of the mass balance errors,
as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.24)

8.0E-05 No

First 6.0E-05 No

Second 6.0E-08 No

Finite Amplitude, Part 1 3.0E-05 No

Finite Amplitude, Part 2 6.0E-09 No

Advective 1.2E-06 Yes

Flux 1.0E-06 Yes

Viscous 0.0E+00

CM
(Figure 2.25)

5.0E-06 No

Accumulation 3.0E-06 No

Advective 4.0E-07 Yes

Bottom Friction 1.2E-07 Yes

Finite Amplitude, Part 1 3.5E-06 No

Finite Amplitude, Part 2 2.5E-09 Yes

Viscous 0.0E+00

λ Δx⁄
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Figure 2.22.  Mass balance residuals for
the coarse grid simulation, for the East Coast ( ) domain.  The red line
shows the residuals from the finite volume method, and the blue line shows
the residuals from the finite element method.
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dimensional ADCIRC model, and Figure 2.23 shows an expanded view of those same

errors.  As with the East Coast (Constant) domain results in Section 2.3.1.1 and Section

2.3.2.1, the conservative forms of the equations cause the finite volume mass balance

errors to decrease.  For the East Coast ( ) domain, these errors are decreased from a

maximum of about 300 ft2 in Figure 2.18 to a maximum of about 7.5 ft2 in Figure 2.22.

However, the trends remain the same.  The finite volume method produces mass balance

errors near the boundaries and in the region with the steep bathymetry change; while the

finite element method produces trivial mass balance errors throughout the domain.

2.4.2.2.  Truncation Errors for the GWC Equation

Figure 2.24 shows the absolute values of the truncation errors for the conservative

form of the GWC equation.  Note that the same terms that dominate the non-conservative
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Figure 2.23.  An expanded view of the mass
balance residuals for the coarse grid simulation, for the East Coast ( )
domain.  The red line shows the residuals from the finite volume method,
and the blue line shows the residuals from the finite element method.
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form in Figure 2.20 also dominate the conservative form in Figure 2.24 (see Table 2.4 and

Table 2.5), so the overall behavior is almost identical.

2.4.2.3.  Truncation Errors for the CM Equation

Figure 2.25 shows the absolute values of the truncation errors for all of the terms in

the CM equation.  Note the differences between the truncation errors from the non-

conservative form in Figure 2.21 and those from the conservative form in Figure 2.25; the

conservative form has decreased the maximum truncation errors at the shelf break so that

they are the same magnitude as the truncation errors in the rest of the domain.  Thus, when

a variable node spacing ( ) is used, the finite volume mass balance errors are not

nearly as good of a predictor of truncation errors from the CM equation.
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Figure 2.24.  Absolute values of the trunca-
tion errors for all of the terms in the conservative GWC equation, for the
East Coast ( ) domain.  Note that the units of truncation error are feet/
sec2.
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2.5.  East Coast (LTEA) Domain

As described in Section 2.2.4, the third model domain is a version of the East

Coast slice that uses a variable node spacing based on a localized truncation error analysis.

As shown in Figure 2.4, this method clusters nodes near the shelf break, where, as shown

in Section 2.3, the truncation errors are significant when a constant spacing is used.  Thus,

the East Coast (LTEA) domain should be a good test of the hypothesis; it should cut the

truncation errors, and hopefully the mass balance errors will follow.

2.5.1.  Non-Conservative Form

The results of the truncation error studies are shown in Table 2.6.  Note that, if

anything, the qualitative results in the third column are more closely aligned with the
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Figure 2.25.  Absolute values of the trun-
cation errors for all of the terms in the CM equation, for the East Coast
( ) domain.  Note that the units of truncation error are feet/sec2.λ Δx⁄
47



constant node spacing results in Table 2.2 than the variable node spacing ( ) results

in Table 2.4.  If the first term, , did not cause large truncation errors in the deep

water part of the domain, then the overall truncation errors for the GWCE would show

good agreement with the finite volume mass balance errors.  The LTEA method of

Table 2.6: Summary of truncation errors for the non-conservative form of
the ADCIRC model, for the East Coast (LTEA) domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are feet/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.28)

2.5E-04 No

First 1.7E-04 No

Second 1.5E-07 No

Finite Amplitude, Part 1 1.1E-04 No

Finite Amplitude, Part 2 2.5E-07 Yes

Advective, Part 1 4.0E-07 Yes

Advective, Part 2 5.0E-05 Yes

Flux 1.5E-05 Yes

Viscous 0.0E+00

NCM
(Figure 2.29)

5.0E-04 Yes

Accumulation 6.0E-06 No

Advective 2.4E-04 Yes

Bottom Friction 7.0E-06 Yes

Finite Amplitude 3.0E-04 Yes

Viscous 0.0E+00
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variable node spacing decreases the truncation errors, but it does not change their

behavior.

2.5.1.1.  Mass Balance Errors

Figure 2.26 shows the mass balance errors for the non-conservative version of the

ADCIRC model, and Figure 2.27 shows an expanded view of those same mass balance

errors.  Note that the errors computed from the finite element method are still small, to

where the axis has to be refined to the order of 10-5 ft2 before they become evident.  Also

note that the errors computed from the finite volume method follow a similar pattern: the

significant errors occur near the boundaries and near the shelf break.  The LTEA method

of placing node points has a positive effect on the finite volume mass balance errors,

which decrease from a maximum magnitude of 200-300 ft2 for the East Coast (Constant)
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Figure 2.26.  Mass balance residuals for
the coarse grid simulation, for the East Coast (LTEA) domain.  The red line
shows the residuals from the finite volume method, and the blue line shows
the residuals from the finite element method.
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results in Figure 2.6 and the East Coast ( ) results in Figure 2.18 to a maximum

magnitude of 30 ft2 for the East Coast (LTEA) results in Figure 2.26.  The lower mass

balance errors from the finite volume method reflect the extra LTEA resolution in the

region of interest.

2.5.1.2.  Truncation Errors for the GWC Equation

Figure 2.28 shows the absolute values of the truncation errors for all of the non-

conservative terms in the GWC equation.  Note that, as with the East Coast ( )

domain in Figure 2.20, the variable spacing of the East Coast (LTEA) domain causes a

decrease in the maximum truncation error from the GWC equation.  Instead of showing a

clear peak of 0.07 feet/sec2 at the shelf break, like for the East Coast (Constant) domain in

Figure 2.10, the truncation errors show several peaks of about 0.0002 feet/sec2.  Once
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Figure 2.27.  An expanded view of the mass
balance residuals for the coarse grid simulation, for the East Coast (LTEA)
domain.  The red line shows the residuals from the finite volume method,
and the blue line shows the residuals from the finite element method.
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again, the error behavior varies for each of the terms in the GWC equation.  All of the

terms show skinny spikes at a distance of about 1,100 miles, in the very-refined steep

slope region.  The truncation errors in the deep water are the result of three terms: the first

term, ; the second term, ; and the first part of the finite amplitude term,

.

2.5.1.3.  Truncation Errors for the NCM Equation

Figure 2.29 shows the truncation errors for the NCM equation.  The LTEA method

of placing node points causes a decrease of about an order of magnitude from the constant

spacing results in Figure 2.12, but it is about an order of magnitude larger than the NCM

results from the East Coast ( ) domain shown in Figure 2.21.  (We would propose

that this difference in magnitude is caused by the greater variation in grid spacing for the
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Figure 2.28.  Absolute values of the trunca-
tion errors for all of the terms in the non-conservative GWC equation, for
the East Coast (LTEA) domain.  Note that the units of truncation error are
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East Coast (LTEA) domain; a greater variation would cause some of the coefficients of the

derivatives in the truncation error terms to become more dominant.)  More importantly,

the only significant truncation errors occur near the shelf break, and the overall behavior

of the truncation errors is similar to that of the finite volume mass balance errors.

2.5.2.  Conservative Form

Table 2.7 summarizes the truncation errors results for the East Coast (LTEA)

domain and the conservative form of the ADCIRC model.  The same terms dominate the

conservative GWCE as did the non-conservative GWCE earlier, so that equation also

produces overall truncation errors that do not follow the finite volume mass balance

errors.  However, the CM equation does produce results that correlate well.
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Figure 2.29.  Absolute values of the trun-
cation errors for all of the non-conservative terms in the NCM equation, for
the East Coast (LTEA) domain.  Note that the units of truncation error are
feet/sec2.  Also note that there is a clear maximum at a distance of about
1,100 miles, where the steep slope begins.
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2.5.2.1.  Mass Balance Errors

Figure 2.30 shows the mass balance residuals for the conservative version of the

one-dimensional ADCIRC model, and Figure 2.31 shows an expanded view of those same

Table 2.7: Summary of truncation errors for the conservative form of the
ADCIRC model, for the East Coast (LTEA) domain.  In the first column,
the names refer to terms in Appendix A.  In the second column, the units of
truncation error are feet/sec2.  The last column refers to whether the
behavior of the truncation errors matches that of the mass balance errors,
as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.32)

2.5E-04 No

First 1.7E-04 No

Second 1.5E-07 No

Finite Amplitude, Part 1 1.0E-04 No

Finite Amplitude, Part 2 2.5E-07 Yes

Advective 1.0E-04 Yes

Flux 1.5E-05 Yes

Viscous 0.0E+00

CM
(Figure 2.33)

2.0E-05 Yes

Accumulation 6.0E-06 No

Advective 1.1E-05 Yes

Bottom Friction 3.0E-07 Yes

Finite Amplitude, Part 1 1.0E-05 Yes

Finite Amplitude, Part 2 2.5E-08 Yes

Viscous 0.0E+00
53



0 200 400 600 800 1000 1200
Distance, mi

-20

-10

0

10

laudise
R

,
2tf

Mass Balance

Figure 2.30.  Mass balance residuals for
the coarse grid simulation, for the East Coast (LTEA) domain.  The red line
shows the residuals from the finite volume method, and the blue line shows
the residuals from the finite element method.
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Figure 2.31.  An expanded view of the mass
balance residuals for the coarse grid simulation, for the East Coast (LTEA)
domain.  The red line shows the residuals from the finite volume method,
and the blue line shows the residuals from the finite element method.
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residuals.  The conservative version again decreases the maximum mass balance error,

which is about 40 percent less than the maximum error from the non-conservative version

in Figure 2.26, but the difference is not as significant as it was for the East Coast

(Constant) domain.  Significant errors occur over a larger region than they did for the non-

conservative version, but the maximum errors still occur near the shelf break.

2.5.2.2.  Truncation Errors for the GWC Equation

Figure 2.32 shows the absolute value of the truncation errors for the GWC

equation.  These errors are almost identical to those shown in Figure 2.28 from the non-

conservative form of the GWC equation, because the dominant terms are the same in both

forms.  Thus, the peak at the shelf break is the same order of magnitude as the peaks in the

deeper regions of the domain.
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Figure 2.32.  Absolute values of the trunca-
tion errors for all of the terms in the conservative GWC equation, for the
East Coast (LTEA) domain.  Note that the units of truncation error are feet/
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2.5.2.3.  Truncation Errors for the CM Equation

Figure 2.33 shows the absolute values of the truncation errors for the CM equation.

As with the results from the NCM equation in Figure 2.29, the significant truncation errors

occur at the shelf break.  However, the conservative form decreases the magnitude of

those errors by about 96 percent, so that the errors in the rest of the domain become more

pronounced at this scale.  Nevertheless, the overall behavior of these truncation errors

follows that of the finite volume mass balance errors in Figure 2.30.

2.6.  Linear Sloping Beach Domain

The first three test domains were based on the East Coast bathymetry with a fixed

land boundary, but with different node spacings.  Those domains are good tests for mass
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Figure 2.33.  Absolute values of the trunca-
tion errors for all of the terms in the CM equation, for the East Coast
(LTEA) domain.  Note that the units of truncation error are feet/sec2.
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balance because they contain converging flow over a shelf break, which has historically

caused problems for the ADCIRC model.  Another good test case for mass balance is any

problem that contains wetting and drying, because, as will be discussed in later chapters,

the ADCIRC wetting and drying algorithm adds and subtracts elements from the

computational domain as regions are wetted and dried.  Thus, our fourth test domain is the

Linear Sloping Beach domain, which was described in Section 2.2.4.  We chose this

domain because it has an analytical solution, which proved useful in the wetting and

drying studies.  In this subsection, we will present the mass balance and truncation errors

for the non-conservative and conservative versions of the one-dimensional ADCIRC

model.

2.6.1.  Non-Conservative Form

Table 2.8 summarizes the truncation error results for the non-conservative form of

the ADCIRC model.  Like the constant node spacing results for the East Coast (Constant)

domain in Section 2.3, the constant node spacing results for the Linear Sloping Beach

domain produce truncation errors that are consistent with the finite volume mass balance

errors.  In fact, they are uniformly consistent, in that the truncation errors for every term

follow the finite volume mass balance errors.

2.6.1.1.  Mass Balance Errors

Figure 2.34 shows the mass balance errors for the non-conservative version of the

one-dimensional ADCIRC model, and Figure 2.35 shows an expanded view of the same

errors.  At the point in time when we calculate these errors, the wet/dry interface is at a
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distance of about 18 kilometers, as shown in Figure 2.5, and moving toward the right

(land-ward side of the domain).  Thus, the significant finite volume mass balance errors in

Figure 2.34 occur in the region where wetting and drying is taking place.  This trend

continues throughout the rest of the simulation; i.e., significant finite volume mass balance

errors follow the wet/dry interface as it inundates and recedes.  Note that the finite element

Table 2.8: Summary of truncation errors for the non-conservative form of
the ADCIRC model, for the Linear Sloping Beach domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are meters/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.36)

7.0E-05 Yes

First 4.0E-05 Yes

Second 1.7E-05 Yes

Finite Amplitude, Part 1 2.0E-05 Yes

Finite Amplitude, Part 2 2.0E-06 Yes

Advective, Part 1 6.0E-06 Yes

Advective, Part 2 1.2E-05 Yes

Flux 2.5E-06 Yes

Viscous 0.0E+00

NCM
(Figure 2.37)

1.5E-02 Yes

Accumulation 6.0E-03 Yes

Advective 1.5E-03 Yes

Bottom Friction 3.5E-05 Yes

Finite Amplitude 8.0E-03 Yes

Viscous 0.0E+00
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Figure 2.34.  Mass balance residuals for
the coarse grid simulation, for the Linear Sloping Beach domain.  The red
line shows the residuals from the finite volume method, and the blue line
shows the residuals from the finite element method.
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Figure 2.35.  Close-up of the mass balance
residuals for the coarse grid simulation, for the Linear Sloping Beach
domain.  The red line shows the residuals from the finite volume method,
and the blue line shows the residuals from the finite element method.
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mass balance errors, shown in Figure 2.35, show a similar oscillatory pattern and have

their largest magnitude near the wet/dry interface.  However, the errors oscillate around a

non-zero value in the deeper region of the domain, and the scale must be refined by four

orders of magnitude before they become apparent.

2.6.1.2.  Truncation Errors for the GWC Equation

Figure 2.36 shows the absolute values of the truncation errors for the non-

conservative form of the GWC equation.  Note the similarities in behavior between the

truncation errors and the finite volume mass balance errors; both show trivial errors in the

deeper region of the domain, and both have significant peaks in the wetting and drying

region.  The finite volume mass balance errors follow the truncation errors.
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Figure 2.36.  Absolute values of the trun-
cation errors for all of the terms in the non-conservative GWC equation, for
the Linear Sloping Beach domain.  Note that the units of truncation error
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2.6.1.3.  Truncation Errors for the NCM Equation

Figure 2.37 shows the absolute values of the truncation errors for the NCM

equation.  Again, the truncation errors show a behavior similar to the finite volume mass

balance errors.  The maximum truncation error occurs near the wet/dry interface, and the

rest of the truncation errors are approximately zero.

2.6.2.  Conservative Form

Table 2.9 summarizes the truncation error results for the conservative form of the

ADCIRC model, for the Linear Sloping Beach domain.  Like the non-conservative results

in Table 2.8, the conservative results all show good agreement between the finite volume

mass balance errors and the truncation errors.  Note that the conservative form of the
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Figure 2.37.  Absolute values of the trun-
cation errors for all of the terms in the NCM equation, for the Linear Slop-
ing Beach domain.  Note that the units of truncation error are meters/sec2.
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momentum equation again decreases the truncation errors, this time by about two orders

of magnitude.  However, the maximum truncation errors continue to appear in the region

near the wet/dry interface.

Table 2.9: Summary of truncation errors for the conservative form of the
ADCIRC model, for the Linear Sloping Beach domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are meters/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.40)

7.0E-05 Yes

First 4.0E-05 Yes

Second 1.7E-05 Yes

Finite Amplitude, Part 1 2.0E-05 Yes

Finite Amplitude, Part 2 2.0E-06 Yes

Advective 2.5E-06 Yes

Flux 2.5E-06 Yes

Viscous 0.0E+00

CM
(Figure 2.41)

3.5E-04 Yes

Accumulation 5.0E-05 Yes

Advective 2.0E-05 Yes

Bottom Friction 6.0E-07 Yes

Finite Amplitude, Part 1 2.5E-04 Yes

Finite Amplitude, Part 2 6.0E-05 Yes

Viscous 0.0E+00
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2.6.2.1.  Mass Balance Errors

Figure 2.38 shows the mass balance errors for the conservative version of the one-

dimensional ADCIRC model, and Figure 2.39 shows an expanded view of those same

errors.  The conservative version produces slightly smaller finite volume mass balance

errors; the non-conservative version had a maximum of about 0.05 m2 in Figure 2.34,

whereas the conservative version has a maximum of about 0.03 m2 in Figure 2.38.  The

conservative version also produces larger finite volume mass balance errors near the left

boundary.  Note that the behavior of the finite element mass balance errors does not

change, but their magnitudes are decreased slightly.
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Figure 2.38.  Mass balance residuals for
the coarse grid simulation, for the Linear Sloping Beach domain.  The red
line shows the residuals from the finite volume method, and the blue line
shows the residuals from the finite element method.
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2.6.2.2.  Truncation Errors for the GWC Equation

Figure 2.40 shows the absolute values of the truncation errors for the conservative

form of the GWC equation.  Once again, the behavior of the truncation errors matches the

behavior of the finite volume mass balance errors.  And, as shown in Table 2.8 and Table

2.9, the form of the GWC equation does not affect the magnitude of the truncation errors,

at least for this grid.

2.6.2.3.  Truncation Errors for the CM Equation

Figure 2.41 shows the absolute values of the truncation errors for the CM equation.

The conservative form again causes a decrease in the magnitude of the truncation errors,

this time by about two orders of magnitude from the non-conservative results in Section

0 5 10 15 20
Distance, km

-1μ10-6

-8μ10-7

-6μ10-7

-4μ10-7

-2μ10-7

0

laudise
R

,
2

m

MassBalance

Figure 2.39.  An expanded view of the mass
balance residuals for the coarse grid simulation, for the Linear Sloping
Beach domain.  The red line shows the residuals from the finite volume
method, and the blue line shows the residuals from the finite element
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2.6.1.3, but it does not change the overall shape.  Significant truncation errors occur in the

wetting and drying region, and they follow the finite volume mass balance errors.
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Figure 2.40.  Absolute values of the trun-
cation errors for all of the terms in the conservative GWC equation, for the
Linear Sloping Beach domain.  Note that the units of truncation error are
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Figure 2.41.  Absolute values of the trun-
cation errors for all of the terms in the CM equation, for the Linear Sloping
Beach domain.  Note that the units of truncation error are meters/sec2.
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2.7.  Grid Generation using Finite Volume Mass Balance Errors

The results in the previous four subsections indicate that finite volume mass

balance error can be used as an indicator of truncation error, especially for grids with

constant node spacing.  This trend can be exploited.  When grids (such as the East Coast

(LTEA) domain in Section 2.5) are developed by minimizing truncation errors, they

exhibit better behavior overall [6, 7].  However, it is costly to develop these grids because

they require computation of the truncation errors, which require knowledge of the true or

“fine” solution.  It would be much more efficient if mass balance error could be used as

the criterion for grid development.  In fact, it would lead to dynamic (run-time) meshing.

In this section, we will “pilot” the idea by walking through the development of a

grid that uses mass balance error as the criterion for node placement.  We will begin with

the East Coast (Constant) domain described in Section 2.2.4 and Section 2.3 and use the

following assumptions:

• The study should use the non-conservative form of the ADCIRC model.

• The criterion should be mass balance error computed by the finite volume

method, because we have shown that the finite volume method is a better

indicator of truncation errors than is the finite element method.

• The total number of nodes should remain constant.  In other words, in order to

place a node in a region with high mass balance errors, a node must first be

removed from a region with low mass balance errors.  The East Coast

(Constant) domain has 65 nodes, so our concept domain will have more nodes

than either of the variable-spaced East Coast domains described previously,

which both had 46 nodes.
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• The removal of a node in a region with low mass balance errors should not

affect the neighboring nodes.  Thus, when a node is removed, its neighbors

should not be moved to compensate.  In effect, the grid spacing in that region is

doubled, and it can be increased further after successive iterations.

• When a node is added to a region with high mass balance errors, it should be

placed at the midpoint of an existing element.  In effect, the grid spacing in that

region is halved.

• When a node is added, its bathymetry should be computed from a linear

interpolation of the surrounding bathymetries.  In an automated grid-

generation scheme, a background grid and higher-order interpolation could be

used to compute bathymetries.

These assumptions were made as much for convenience as for scientific correctness.

However, they allow for a grid development scenario that illustrates how mass balance

error can be used to generate a grid that minimizes truncation errors.

We begin with the finite volume mass balance errors shown in Figure 2.6.  The

largest magnitude error is -293 ft2, and it occurs at a distance of about 1,097 miles, which

is about where the continental shelf begins its steep descent, as shown in Figure 2.3.  All

of the significant finite volume mass balance errors occur in this region.  Thus, to

minimize these mass balance errors, we removed nodes from the deeper parts of the

domain and added them to the shelf-break region.  After several iterations, in which we

moved four or eight nodes at a time and re-computed mass balance, we obtained the node

placement depicted in Figure 2.42.
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We can make several observations based solely on the node distribution.  First, in

order to minimize the finite volume mass balance errors, the majority of the nodes were

placed in the region where the shelf begins its steep descent.  The grid spacing in this

region is about 6,400 feet, or 16 times smaller than the original node spacing.  Second, the

deep water portion of this domain can be modeled with relatively few nodes.  We were

able to increase the grid spacing in this region as high as 820,000 feet, or eight times larger

than the original grid spacing.  Third, after six iterations, a total of 34 nodes were moved

during the grid development.

The effects of this grid on simulation results are dramatic.  Mass balance results

are shown in Figure 2.43.  Adding nodes at the shelf break decreases the finite volume

mass balance errors in that region, and removing nodes from the deep water increases the

errors in that region.  The end result is a domain that shows similar errors in all regions.
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Figure 2.42.  Distribution of nodes for the concept East Coast domain.
Note how nodes are clustered at the shelf break.  The grid spacing ranges
from about 820,000 feet in the deep water to about 6,400 feet near the shelf
break.
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Note that the largest magnitude error is -46.9 feet2, which is a decrease of about 84 percent

from the original, constant-spacing grid.  Further iteration on node placement, specifically

by moving more nodes from the shelf and continental rise to the deep water and shelf

break regions, would further decrease these mass balance errors.

Similar behavior is observed with respect to truncation errors.  Table 2.12

summarizes the truncation errors for the concept East Coast domain, for the non-

conservative form of the ADCIRC model.  Note that, although many of the individual

terms do not produce truncation errors that are qualitatively similar to the finite volume

mass balance errors, the overall equations do.  Figure 2.44 shows the cumulative

truncation errors for the non-conservative form of the GWC equation, and Figure 2.45

shows the cumulative truncation errors for the NCM equation.  Note that, although both

figures have peaks at the shelf break, there are significant truncation errors in the deep
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Figure 2.43.  Mass balance residuals for
the concept East Coast domain.  The red line shows the residuals from the
finite volume method.
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water region of the domain.  Qualitatively, the truncation errors match well with the finite

volume mass balance errors; they are distributed throughout the domain.

It is also important to examine the effect of this grid development in comparison to

the original East Coast (Constant) domain and to the East Coast (LTEA) domain, which

Table 2.10: Summary of truncation errors for the non-conservative form of
the ADCIRC model, for the concept East Coast domain.  In the first
column, the names refer to terms in Appendix A.  In the second column,
the units of truncation error are feet/sec2.  The last column refers to
whether the behavior of the truncation errors matches that of the mass
balance errors, as computed by using the finite volume method.

Term
Maximum

Truncation Error
Follows Mass

Balance?

GWCE
(Figure 2.44)

1.0E-03 Yes

First 5.0E-04 No

Second 5.0E-07 No

Finite Amplitude, Part 1 4.6E-04 No

Finite Amplitude, Part 2 1.2E-06 No

Advective, Part 1 1.9E-07 No

Advective, Part 2 5.0E-04 No

Flux 1.0E-05 No

Viscous 0.0E+00

NCM
(Figure 2.45)

1.0E-04 Yes

Accumulation 1.5E-05 Yes

Advective 4.7E-05 No

Bottom Friction 4.0E-05 No

Finite Amplitude 3.5E-05 Yes

Viscous 0.0E+00
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was developed by minimizing truncation error.  Table 2.12 compares the truncation errors

for all three domains.  Note that the truncation errors from the concept domain are
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Figure 2.44.  Absolute values of the trun-
cation errors for all of terms in the non-conservative GWC equation, for the
concept East Coast domain.  Note that the units of truncation error are feet/
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Figure 2.45.  Absolute values of the trun-
cation errors for all of the terms in the NCM equation, for the concept East
Coast domain.  Note that the units of truncation error are feet/sec2.
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considerably less than those from the East Coast (Constant) domain.  An 84 percent

decrease in finite volume mass balance errors created a 98 percent decrease in GWC

truncation errors and a 97 percent decrease in NCM truncation errors.  Also note that the

truncation errors from the concept domain are comparable to those from the East Coast

(LTEA) domain; in fact, the NCM truncation errors are smaller.  This behavior could be

due to the fact that Hagen [6, 7] only used the linear, harmonic form of the NCM equation

to develop the East Coast (LTEA) domain; this study uses the full, nonlinear, transient

form of the NCM equation.  Thus, not only does this method of grid development decrease

the truncation errors, it also mirrors the results from a grid that was developed by

minimizing truncation errors.

Table 2.11: Comparison of truncation error results for the East Coast
(Constant) domain, the East Coast (LTEA) domain, and the concept East
Coast domain.  In the second column, the units of truncation error are feet/
sec2.  The last column refers to whether the behavior of the truncation
errors matches that of the mass balance errors as computed by using the
finite volume method.

Equation Domain
Maximum

Truncation Error
Follows Mass

Balance?

GWCE

East Coast
(Constant)

7.0E-02 Yes

East Coast
(LTEA)

2.5E-04 No

Concept 1.0E-03 Yes

NCM

East Coast
(Constant)

4.0E-03 Yes

East Coast
(LTEA)

5.0E-04 Yes

Concept 1.0E-04 Yes
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The final test is heuristic stability, in which we find the maximum time step (within

the nearest five seconds) where the model is still stable.  Except for the time step, though,

every run-time parameter stays the same.  The maximum stable time step for the East

Coast (Constant) domain is 195 seconds, and the maximum stable time step for the East

Coast (LTEA) domain is 175 seconds.  The concept East Coast domain causes a decrease

in the maximum stable time step to 130 seconds, which is a decrease of about 33 percent

from the domain with constant node spacing.  There are two possible reasons why the East

Coast (LTEA) domain is more stable than the concept East Coast domain.  First, the East

Coast (LTEA) domain was developed using a technique in which heuristic stability was a

consideration.  If the LTEA method called for a small grid spacing to be followed

immediately by a large grid spacing, then extra nodes were added to smooth the transition.

This relaxation criterion improves stability for that domain.  Second, the East Coast

(LTEA) domain has 46 nodes, while the concept East Coast domain has 65 nodes.  In any

event, for some simulations, the extra cost of using a smaller time step might be

outweighed by the time saved while generating the grid by using mass balance errors

instead of truncation errors.  In other simulations, the grid development should be

conducted using an automated method, in which the optimization of heuristic stability

should be a secondary goal.

2.8.  Conclusions

In this chapter, we examined the mass balance and truncation errors for four one-

dimensional test problems, in an attempt to determine whether the mass balance errors

computed by the finite volume or finite element method could be used as an indicator of
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truncation errors.  If so, then that method would be useful as an error measure for the

wetting and drying studies, among other uses.  Table 2.12 summarizes how the finite

volume mass balance errors compare to the truncation errors for all four test problems.

For grids with constant spacing, the finite volume mass balance errors are an

excellent indicator of truncation errors.  For the East Coast (Constant) domain in Section

2.3, the non-conservative version showed great agreement between the finite volume mass

balance errors and the truncation errors, and the conservative version showed reasonable

agreement.  For the Linear Sloping Beach domain in Section 2.6, both versions showed

good agreement.  And for both domains, the smaller magnitudes and different behaviors of

the finite element mass balance errors prevented them from matching the truncation error

results.

Table 2.12: Summary of truncation error results for all four test problems.
This table is similar to Table 2.1, except now we have indicated which
combinations of test problem and error measure produce good agreement
between finite volume mass balance errors and truncation errors.  Note that
the two test problems with constant node spacing produce good agreement
for all error measures.

Truncation Error Measure

Non-Conservative Conservative

GWCE NCM GWCE CM

Domain

East Coast
(Constant) Yes Yes Yes Yes

East Coast
( ) No Yes No No

East Coast
(LTEA) No Yes No Yes

Linear Sloping
Beach Yes Yes Yes Yes

λ Δx⁄
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For grids with variable spacing, the results were mixed.  Once again, the finite

element mass balance errors did not provide a good match with the truncation errors, for

any domain or version of the model.  The finite volume mass balance errors agree well

with the truncation errors from both forms of the momentum equation, but they do not

agree with the truncation errors from the GWCE.  However, as discussed earlier, we

believe the GWCE would produce better agreement for the East Coast (LTEA) domain if

the LTEA method had been employed on all of the terms in the equation.  Based on the

information in Table 2.12, we recommend using the truncation errors for the NCM to

correlate with mass balance errors.

Finally, a walk-through of a possible mesh generation algorithm shows promising

results.  By using mass balance errors instead of truncation errors as the meshing criteria,

we were able to produce a concept East Coast domain that has behavior that is comparable

to (and sometimes better than) the East Coast (LTEA) domain.  An automated algorithm

based on this technique could produce better domains, perhaps even in real time.

Almost all of the test domains in the wetting and drying studies herein will use

constant node spacing, so we will use the finite volume method to compute mass balance

errors for the remainder of this thesis.  Not only is that method a good indicator of

truncation errors, but it also is more physically realistic.
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3.  One-Dimensional Wetting and Drying

The ultimate goal of this research is to implement the wetting and drying algorithm

in the three-dimensional ADCIRC model.  Before doing that, however, we felt it necessary

to implement and assess the algorithm in a one-dimensional version of the model, for two

reasons: (1) it allows for a study of the behavior of a simplified version of the algorithm,

which will assist in interpreting its behavior in two- and three-dimensional versions; and

(2) it allows for the development of an optimal set of run-time parameters.

This chapter is composed of three main subsections.  The Methods subsection

summarizes the wetting and drying algorithm that was implemented in the one-

dimensional ADCIRC model, presents the four model problems on which the algorithm

was tested, and describes the two error measures used to assess the performance of the

algorithm.  The Numerical Experiments subsection presents the results of a suite of studies

on all four model problems.  Finally, the Conclusions subsection summarizes the most

important results from these studies and lays the groundwork for further implementation

in two- and three-dimensional versions of the model.
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3.1.  Methods

In this section, we will discuss the implementation of a wetting and drying

algorithm in the one-dimensional ADCIRC model.  We will also describe our four model

problems and the methods in which we assess the errors in our numerical results.

3.1.1.  Wetting and Drying Algorithm

The one-dimensional ADCIRC wetting and drying algorithm is an approach

developed by Luettich and Westerink [17,18] and is based on simplified physics and some

empirical rules.  The algorithm is located in the middle of the time loop, after the solution

of the continuity equation but before the solution of the momentum equation.  The

algorithm was updated in 2004 to allow for better wetting in floodplains and better mass

balance properties in barely wet areas.  Those updates were included in our study of the

two- and three-dimensional wetting and drying algorithms and will be discussed in

Section 4.1.2 and Section 5.1.2, but they were not included in the one-dimensional

algorithm.  Thus, the one-dimensional wetting and drying algorithm is comprised of three

parts.

First, the total water depth at every node is checked against a minimum wetness

height, Hmin.  If the total water depth is larger than this minimum value, then the node

remains active (“wet”) and is included in the rest of the calculations.  However, if the total

water depth has fallen below this minimum value, then the node is deemed inactive

(“dry”) and removed from the calculations.  Note that a dry node can have a positive water

depth that is smaller than Hmin.  To help control oscillations, an input parameter allows the

user to control the number of time steps that a node has to remain wet before it can be
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turned off.  Note that, for all of the results from this one-dimensional algorithm, that

parameter was set to 5 time steps.

Second, the steady state velocity that would result from a balance between the

water level gradient and the bottom friction between a wet and an inactive node is checked

against a minimum wetting velocity, Umin.  The balance is given by:

, (3.1)

where g is gravity;  and  are the free surface elevations at the adjacent node and the

node of interest, respectively;  is the equivalent linear bottom friction coefficient (see

Equation 3.7); and  is the grid spacing.  Note that in many situations, only the free

surface elevations will change significantly from time step to time step.  In this case, the

Umin criterion almost becomes a height restriction, where a node becomes active if the

adjacent node's free surface elevation is sufficiently larger than its own.  Again, to help

control oscillations, another input parameter allows the user to control the number of time

steps that a node has to remain inactive before it can be wetted.  For all of the results from

the one-dimensional algorithm, that parameter was set to 5 time steps.

Third, every landlocked wet node is tagged as inactive.  A landlocked wet node is

not connected to any active elements, and thus does not receive contributions to either side

of the equation corresponding to that node.  For some bathymetries, this criterion allows a

node to remain inactive even if its total water depth is larger than the minimum wetting

height.  This is a slight change from the original two-dimensional (x-y) wetting and drying

algorithm, which allows pockets of wet nodes to be surrounded by dry nodes.  This allows

U
g ζi 1– ζi–( )

τiΔxi
-----------------------------=

ζi 1– ζi

τi

Δxi
78



wind stresses and other types of forcing to continue to act on the active elements.

However, because we are not modeling wind stresses in this study, there is no reason to

make landlocked nodes active.

3.1.2.  Model Problems

The studies in this paper utilize four model problems with sloping beaches.  These

problems have open ocean boundaries on the left-hand side and are forced by a tide.

The first model problem is similar to a test problem presented by Luettich and

Westerink [17] in an earlier ADCIRC wetting-and-drying paper.  We chose this

bathymetry because: (1) it allows for a comparison with an analytical solution, as

discussed in Chapter 1; and (2) it allows for a simple test case before moving forward to

more complicated bathymetries.  The problem has the following parameters (unless stated

otherwise): a linear slope, an undisturbed length of 20 kilometers, a bathymetric depth at

the open ocean boundary of 5 meters, a grid spacing of 250 meters, a time step of 10

seconds, a forcing amplitude of 0.25 meters, a tidal period of 12 hours (43,200 seconds), a

duration of 4 tidal periods, a cftau value of 0.001 and a G value of 0.001 sec-1 (both

defined in Section 3.2.1.3), an Hmin value of 0.01 meters, and a Umin value of 0.01 meters

per second.  We will refer to this as Linear Problem 1.

The second model problem creates a situation where waves can wet and dry a

larger number of nodes on the beach.  This problem is deeper but shorter, and it allows

wave run-up to cover more of the beach.  This problem has the following parameters

(unless stated otherwise): a linear slope, an undisturbed length of 18 kilometers, a

bathymetric depth at the open ocean boundary of 6 meters, a grid spacing of 250 meters, a
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time step of 10 seconds, a forcing amplitude of 1.0 meter, a tidal period of 12 hours

(43,200 sec), a duration of 4 tidal periods, a cftau value of 0.001 and a G value of 0.001

sec-1 (both defined in Section 3.2.1.3), an Hmin value of 0.01 meters, and a Umin value of

0.01 meters per second.  We will refer to this as Linear Problem 2.

The third model problem uses a quadratic sloping beach, as shown in Figure 3.1.

This problem has the following parameters (unless stated otherwise): a quadratic slope, an

undisturbed length of 12 kilometers, a bathymetric depth at the open ocean boundary of 6

meters, a grid spacing of 250 meters, a time step of 10 seconds, a forcing amplitude of 1.0

meter, a tidal period of 12 hours (43,200 sec), a duration of 4 tidal periods, a cftau value of

0.001 and a G value of 0.001 sec-1 (both defined in Section 3.2.1.3), an Hmin value of 0.01

meters, and a Umin value of 0.01 meters per second.  We will refer to this as the Quadratic

Problem.

Figure 3.1.  Bathymetry for
the Quadratic Problem.  Note that the bathymetric depth is 6 meters at the
ocean boundary, the total length is 24 kilometers, and the undisturbed
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The fourth model problem is a one-dimensional slice of a two-dimensional

domain.  The finite element grid for the Shinnecock Inlet domain is shown in Figure 3.2

[21,22,27].  Shinnecock Inlet is located on the coast of Long Island, New York, and its

realistic bathymetry is an appropriate test of the wetting and drying algorithm, especially

in one-dimension.  We extracted a one-dimensional slice from this domain.  The slice runs

approximately north-to-south, beginning within the inlet and ending at the open ocean

boundary, as shown in Figure 3.2.  The bathymetry for this slice is shown in Figure 3.3.

Note that this problem is significantly deeper than the idealistic model problems, and the

bathymetry is much more varied, especially near the inlet itself.  Also note that, because

we followed the resolution in the two-dimensional domain, this one-dimensional domain

Figure 3.2.  The finite element
grid for the two-dimensional Shinnecock Inlet domain.  Note that the reso-
lution is high around the inlet itself, but that it decreases near the ocean
boundary.  A schematic of the one-dimensional slice used in this study is
shown in red.  It begins inside the inlet, moves through the opening, and
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utilizes a variable grid spacing.  This problem has the following parameters (unless stated

otherwise): an undisturbed length of 56.8 kilometers, a bathymetric depth at the open

ocean boundary of about 53 meters, a variable grid spacing, a time step of 10 seconds, a

forcing amplitude of 1.0 meter, a tidal period of 12 hours (43,200 sec), a duration of 4 tidal

periods, a cftau value of 0.001 and a G value of 0.001 sec-1 (both defined in Section

3.2.1.3), an Hmin value of 0.01 meters, and a Umin value of 0.01 meters per second.  We

will refer to this as the Inlet Problem.

3.1.3.  Error Computations

The most important reason for selecting two test domains with linear sloping

beaches is that this problem has an analytical solution.  Thus, for Linear Problem 1 and

Linear Problem 2, our sensitivity studies utilize a comparison between our numerical

Figure 3.3.  Bathymetry for
the Inlet Problem.  The opening between the inlet and the ocean is located
about 51 kilometers into the domain, where the depth is about 10 meters.
Note that the bathymetric depth ranges from a maximum of about 53
meters at the ocean boundary, to 0.94 meters at a distance of 53 kilometers
into the domain.  The total length of the domain is 56.8 kilometers.
82



results and the analytical solution described in Section 3.2.1.1.  This comparison is

calculated through an examination of the position of the wet/dry interface over the fourth

tidal period (because the model is spun up from a cold start for the first three periods).

After every 10 minute interval in that fourth period, we calculate the difference between

the position of the interface given by the numerical results and the position of the interface

given by the analytical solution.  These differences are then averaged.  If the numerical

results successfully approximate the analytical solution, then the average difference

should be zero.  However, spatial discretization often prevents a perfect match between

numerical and analytical, so we are satisfied if the average difference is less than the grid

spacing of 250 meters.

Our studies also utilize a computation of mass balance error.  This is a cumulative

mass balance error over the entire simulation.  It is calculated using a finite volume

approach, where we compute the difference between the global accumulation and the

global mass flux, as represented by the primitive continuity equation.  Recently, several

papers [1, 8] have advocated computing mass balance from finite element residuals in

order to be consistent with the numerical discretization.  However, we have shown (Kolar

et al. [13]) the finite volume approach to be a good surrogate variable for accuracy and

phasing errors; that is, small mass balance errors (as computed with finite volume)

correlate with small constituent errors.  Additionally, in Chapter 2, we showed that the

finite volume method is a good indicator of truncation errors, especially for domains that

have a constant node spacing.  Hence our reason for using the finite volume approach

herein.
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3.2.  Numerical Experiments

In this section, we discuss the results of several tests involving the one-

dimensional wetting and drying algorithm and our model problems.  We will first examine

Linear Problem 1 and Linear Problem 2, then the Quadratic Problem, and then the Inlet

Problem.

3.2.1.  Linear Problem 1 and Linear Problem 2

The results in this subsection are from tests on the two model problems with linear

sloping beaches.  First, we compare the numerical results with an analytical solution.

Second, we examine the algorithm's effect on temporal stability.  Third, we conduct

parameter sensitivity studies for bottom friction and the G numerical parameter.  Fourth,

we conduct parameter sensitivity studies for the wetting and drying parameters Hmin and

Umin.  Fifth, we examine the effect of spatial resolution on the performance of the

algorithm.

3.2.1.1.  Comparison with an Analytical Solution

The classic analytical solution for wave run-up on a sloping beach was first

expressed by Carrier and Greenspan [3] and later revisited by Johns [10] and Siden and

Lynch [24].  The solution is quite restrictive; it describes the behavior of a frictionless

wave on a linearly-sloped beach.  The one-dimensional wetting-and-drying ADCIRC

model incorporates bottom friction and can be applied to complex bathymetries.

However, it is important to verify its performance against an analytical solution in this

simple test case.
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The full equations for the analytic solution are given in the latter two references.

We will reproduce the important ones here.  The equations for the velocity, horizontal

position, and elevation of the shoreline are given by:

, (3.2)

, (3.3)

and

, (3.4)

where u is the scaled velocity,  is the scaled horizontal displacement, A is the scaled

amplitude, T is the scaled period, t is the scaled time, and  is the scaled free surface

elevation from the mean.  Note that Equation 3.4 holds true because the scaling changes

the slope to 45 degrees.  We solve for u in Equation 3.2 by using an iterative technique, a

finite difference approximation on the  terms, and the knowledge that the velocity

of the shoreline at maximum inundation is zero.  Once the shoreline information is

calculated, then the velocity and elevation at interior points can be calculated using the

following equations:

, (3.5)

and

, (3.6)
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where J0 and J1 are Bessel functions and x is scaled horizontal position.  Equation 3.5 and

Equation 3.6 must also be solved iteratively.  Note that the ADCIRC boundary forcing

was adjusted to match the cosine forcing of the analytical solution.

We attempted to match our numerical results with the analytical solution by using

Linear Problem 1.  Figure 3.4 and Figure 3.5 show the analytical solution and numerical

results at two different times in the second tidal cycle.  (Without using a ramp function to

smooth the transition from a cold start, the numerical solution experiences some start-up

noise during the first tidal cycle.)  Note that the numerical results show good agreement

with the analytical solution and that there is no friction-induced lag at the shoreline.  We

believe the good agreement is due to our relatively small value of cftau, so that the bottom

friction does not dominate the momentum balance.  Note that the one-dimensional

ADCIRC model is not stable with a bottom friction coefficient of zero, so an exact

Figure 3.4.  The numerical results
(black dots) and the analytical solution (solid line) halfway through the
second tidal cycle.  The solid diagonal line is the bathymetry.  Note that the
number at the top of the figure is the time in seconds.
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comparison to the analytical solution is impossible.  However, we are forcing our problem

at the boundary, so bottom friction does not damp out the response.

Figure 3.6 shows the position of the shoreline over the first three tidal periods.

(This is similar to Figures 2 and 3 in Johns [10].)  After the numerical results fight through

the noise of the first tidal period, they show very good agreement with the analytical

solution.  There is some visible lag during the wetting phase, which raises the question of

whether we need to relax our wetting criterion.  That question will be addressed in a

parameter study in Section 3.2.1.4; for now, we believe the information in these figures

shows that the ADCIRC model can provide accurate results for this simple test case.

Figure 3.5.  The numerical results
(black dots) and the analytical solution (solid line) at the end of the second
tidal cycle.  The solid diagonal line is the bathymetry.  Note that the num-
ber at the top of the figure is the time in seconds.
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3.2.1.2.  Hueristic Stability

Stability was measured by determining the maximum time step (within 5 seconds)

at which the model still provided valid results.  However, it is difficult to measure the

impact of the wetting and drying algorithm on stability because our model problems

cannot be run with the original fixed-boundary ADCIRC model.  In order to prevent

instabilities during the ebb phase when nodes should dry but cannot, we altered our model

problems so that they could be run with the original model.

For Linear Problem 1, we shortened the domain to 16 kilometers so that there is a

bathymetry of 1 meter at the land boundary.  This prevents the 0.25 meter forcing

amplitude from trying to dry out nodes on the beach.  All of the other parameters,

including the slope, remained the same.  Under these conditions, the original ADCIRC

model provided a maximum stable time step of 60 seconds.  The wetting and drying

Figure 3.6.  The position of
the shoreline, as given by the numerical results (black dots) and the analyt-
ical solution (solid line) for the first three tidal periods.
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model, when applied to the unaltered Linear Problem 1, provided a maximum stable time

step of 55 seconds.  This is a decrease of 8.3 percent.

For Linear Problem 2, we shortened the domain to 12 kilometers so that there is a

bathymetry of 2 meters at the land boundary.  This prevents the 1 meter forcing amplitude

from trying to dry out nodes on the beach.  All of the other parameters, including the

slope, remained the same.  The original ADCIRC model provided a maximum stable time

step of 50 seconds.  The wetting and drying model, when applied to the unaltered Linear

Problem 2, provided a maximum stable time step of 15 seconds.  This is a decrease of 70

percent.

Note that, for both problems, mass balance errors were an order of magnitude

greater for the wetting and drying model.  These errors were concentrated on the beach

where nodes are turned on and off.

3.2.1.3.  Parameter Sensitivity - cftau and G

Two important parameters in the ADCIRC model are cftau and G, the former being

a physical parameter and the latter being purely numerical.  The parameter cftau controls

bottom friction in the model.  It is used as a coefficient in the calculation of the equivalent

linear bottom friction coefficient, , in the momentum equation for each node i:

. (3.7)

Note that the magnitude of  is directly proportional to the magnitude of cftau; as cftau

goes to zero, so does tau.  As expected, bottom friction plays a significant role in the
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wetting and drying process.  Its relative magnitude increases in shallower, near-shore

waters and hence it directly affects the speed at which waves inundate or recede.

The parameter G is the numerical parameter introduced by Kinnmark [11] to

control the balance between the wave continuity equation and the primitive continuity

equation.  As G is decreased, the GWCE become more like a pure wave equation; as G is

increased, the GWCE more closely approximates the primitive equation.  As reported

elsewhere [13], if G is too high, the solution develops spurious oscillations, which prevent

the model from capturing the behavior of the waves.

Because these two parameters are related in their effects on the model's behavior, it

is important to examine them in tandem.  Kolar et al [13] determined an optimal range of

 to be on the order of 1 to 10.  However, that study examined the effects of these

parameters on barotropic tides without wetting and drying.  Herein, we examine their

effects on wetting and drying by varying the parameters cftau and G from 0.000001 to 0.5

(always in sec-1 for G; cftau is dimensionless), creating a matrix of cftau-G combinations.

For each combination, we compared the behavior of the model with the analytical solution

described above, and we examined the model's mass balance properties.  The tests in this

section use Linear Problem 2.

The comparison with the analytical solution was performed by averaging the

differences between the numerical results and the analytical solution over the fourth tidal

cycle, as discussed above in Section 3.1.3.  By plotting these averages for each

combination in the matrix, we developed a three-dimensional surface that is shown in

Figure 3.7.  We can share some observations from this surface.  First, the model is unstable

in almost one fourth of the matrix, in the region where both cftau and G approach

G τ⁄
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0.000001.  It is stable, however, in the regions where only one of these parameters

approaches this minimum value.  Second, the model is significantly more sensitive to

variations in cftau.  If G is held constant at a relatively high value, then variations in cftau

produce average differences that range over an order of magnitude.  The errors that occur

when cftau is held constant and G is varied are not nearly so pronounced.

Third, in general, the average differences between the numerical results and the

analytical solution decrease as cftau is decreased.  This trend is intuitive, considering the

analytical solution is frictionless.  A slice of the matrix where cftau is held constant at a

value of 0.000001 and G is varied would show average differences on the magnitude of

three times the grid spacing of 250 meters.

The best agreement between the numerical results and the analytical solution

occurs with a combination such as cftau = 0.0001 and G = 0.01 sec-1, which provides an

Figure 3.7.  The average difference between the numerical results and the
analytical solution over the fourth tidal cycle, as discussed in Section 2.3,
for 144 combinations of cftau and G.  The errors are shown in intervals of
250 meters, which is the grid spacing.
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average difference of 211 meters, or less than one grid spacing.  Figure 3.8 shows the

position of the wet/dry interface over time for a simulation using this combination.  The

numerical results experience some start-up noise during the first two tidal cycles, but then

they show very good agreement with the analytical solution during the fourth tidal cycle.

We will use this combination of cftau and G in Section 3.2.1.4, where we are explicitly

trying to match the analytical solution.  However, it should be remembered that the

analytical solution does not include bottom friction, so it will not be accurate for all

situations.  In general, the values of cftau and G should be determined based on the bottom

friction requirements of the particular simulation.

The examination of the model's mass balance properties was performed in the

same manner, by creating a matrix of cftau-G combinations.  The mass balance error was

calculated using the finite volume approach, described in Section 3.1.3.  Using these

Figure 3.8.  The position of
the shoreline, as given by the numerical results (black dots) and the analyt-
ical solution (solid line) for the first four tidal periods.
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average mass balance errors, we created another three-dimensional surface, this time

shown in Figure 3.9.  The model is unstable for the same region of combinations, where

both cftau and G approach 0.000001.  However, if G remains relatively large, then cftau

can be decreased without significant penalty.  For example, a typical range of cftau from

10-3 to 10-5 shows: (1) mass balance errors on the order of 2,000 square meters, or

approximately 3.7 percent of the total undisturbed water area; and (2) when G is decreased

to its minimum stable value, ratios of  are in the range of 1 to 10 (optimum range

reported by Kolar et al. [13] in their fixed-boundary barotropic studies).  Note that values

of cftau larger than 10-3 do show good mass balance, but they produce unrealistically

damped simulations.

Figure 3.9.  Mass balance errors for 144 combinations of cftau and G.  The
errors are shown in intervals of 5,000 square meters.  The errors in the
region at the front of the graph are on the order of 1,000 to 2,000 square
meters, or 1.9 to 3.7 percent of the undisturbed water area.

G τ⁄
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3.2.1.4.  Parameter Sensitivity - Hmin and Umin

Another pair of important numerical parameters is Hmin and Umin, described above

in Section 3.1.1.  Both parameters affect the ability of the algorithm to wet or dry nodes.

The parameter Hmin controls the drying phase, and the parameter Umin controls the wetting

phase.  For example, a large value for Hmin would allow nodes to dry while still holding a

significant amount of water, causing nodes to dry much faster than they should.  Similar

problems would be experienced if the value for Hmin is too small or if the value of Umin is

at either extreme.  Thus, it is important to consider the effects of the two parameters in

tandem.

We performed this consideration by using the same technique as for cftau and G.

We examined the effects of Hmin and Umin by varying each parameter from 0.0001 to 0.5

(meters for Hmin; meters per second for Umin), creating a matrix of Hmin-Umin

combinations.  For these runs, we used cftau = 0.0001 and G = 0.01 sec-1, which the

previous study found to produce meaningful solutions.  We also used Linear Problem 2.

For each combination of Hmin and Umin, we compared the behavior of the model with the

analytical solution and we examined the model's mass balance properties.

The comparison with the analytical solution was performed by using the same

technique as above, where we built a matrix of average differences between the numerical

results and the analytical solution, as shown in Figure 3.10.  We offer the following

observations.  First, the model does not go unstable anywhere in the range from 0.0001 to

0.5.  In fact, we were able to successfully decrease Hmin to 10-10 meters; the model

behaves similarly for all values of Hmin less than 0.01 meters.  However, increasing Hmin
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beyond the upper limit of this range does cause instabilities, especially for unrealistic

values such as 10 meters.  Second, the parameter Umin has no significant effect on the

behavior of the model for the conditions of this problem.  In this graph, there is no

noticeable change between the average differences for the extreme values of Umin =

0.0001 meters per second and Umin = 0.5 meters per second.  Results are insensitive to the

parameter Umin for this test problem.

The examination of the model's mass balance properties was performed in the

same manner as described in Section 3.1.3.  The mass balance error was calculated by

computing the difference between the global accumulation and the global mass flux.  A

three-dimensional surface of average mass balance errors over four tidal cycles is shown

in Figure 3.11, and it reveals the following.  First, again, the model does not experience

Figure 3.10.  The average difference between the numerical results and the
analytical solution in their calculation of the position of the shoreline over
the fourth tidal cycle.  (See Section 3.1.3.)  The error is shown in intervals
of 250 meters, which is the grid spacing.
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instabilities for any combination of Hmin and Umin within the range from 0.0001 to 0.5.

Second, the wetting criterion Umin does not have an effect on mass balance.  Third, the

average mass balance errors decrease as Hmin is increased.   The errors decrease from a

steady 1100 square meters when Hmin is less than 0.01 to about 400 square meters when

Hmin = 0.5.  However, this decrease is at the expense of accuracy, as discussed above and

shown in Figure 3.10.  For such a large value of Hmin, the numerical results are unable to

match the analytical solution.

Thus, results indicate an optimal value for these two parameters Hmin and Umin is

around 0.01.  There does not appear to be a lower limit for either parameter; however,

nothing is gained by decreasing either parameter to the limits of machine precision.  We

will continue to use values of 0.01 for both parameters.

Figure 3.11.  The mass balance errors for a range of Hmin and Umin values.
(See Section 3.1.3.)  The errors are shown in intervals of 200 square
meters.
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3.2.1.5.  Spatial Resolution

Spatial resolution also plays a significant role in the simulation of wetting and

drying, because it controls the model's ability to follow the position of the shoreline as it

inundates and recedes.  Using Linear Problem 2, we varied the spatial resolution from a

minimum of 100 meters to a maximum of 2000 meters.  For each grid spacing, we

compared the behavior of the model with the analytical solution, and we examined the

model's mass balance properties.

Figure 3.12 shows the average difference between the numerical results and the

analytical solution for the various spatial resolutions.  Note that all of the simulations were

run with a time step of 10 seconds except for those with spatial resolutions of 100 meters

and 120 meters, which were run with a time step of 1 second in order to maintain stability.

The graph shows a sublinear (0.64) convergence rate as the grid spacing is decreased.

Figure 3.12.  The average differ-
ence between the numerical results and the analytical solution.  (See Sec-
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Figure 3.13 shows the mass balance errors for the various spatial resolutions.  This

graph supports the use of the finite volume approach as a predictor of model behavior

because, as the grid spacing is decreased, the mass balance errors also decrease (with an

exception at  km.

3.2.2.  Quadratic Problem

The results in this subsection are from tests on a model problem with a quadratic-

sloping beach.  First, we examine the algorithm's effect on temporal stability.  Second, we

conduct parameter sensitivity studies for bottom friction and the G numerical parameter.

Third, we conduct parameter sensitivity studies for the wetting and drying parameters

Hmin and Umin.  Fourth, we examine the effect of spatial resolution on the performance of

the algorithm.

Figure 3.13.  Mass balance
errors (103 square meters) for a range of spatial resolutions.  (See Section

Δx 2=
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3.2.2.1.  Hueristic Stability

Stability was measured by determining the maximum time step (within 5 seconds)

at which the model still provided valid results.  However, we encountered the same

problem that we had with the sloping beach, viz, our wetting and drying model problems

cannot be run with the original fixed-boundary ADCIRC model.  In order to prevent

instabilities during the ebb phase when nodes should dry but cannot, we altered our model

problem so that it can be run with the original model.

For the Quadratic Problem, we shortened the domain to 7 kilometers so that there

is a bathymetry of 2 meters at the land boundary.  This prevents the 1 meter forcing

amplitude from trying to dry out nodes on the beach.  All of the other parameters,

including the slope, remained the same.  The original ADCIRC model provided a

maximum stable time step of 45 seconds.  The wetting and drying model, when applied to

the unaltered Quadratic Problem, provided a maximum stable time step of 15 seconds,

which is a decrease of 66 percent.

Note that, once again, the wetting and drying problem experienced larger local

mass balance errors, and they were concentrated on the beach where nodes are turned on

and off.

3.2.2.2.  Parameter Sensitivity - cftau and G

The effects of the ADCIRC model parameters cftau and G on the wetting and

drying algorithm were again examined.  As described above in Section 3.2.1.3, the

parameter cftau controls the bottom friction in the model, and the parameter G controls the

balance between the wave continuity equation and the primitive continuity equation.
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Herein, we examine their effects on wetting and drying by varying the parameters from

0.000001 to 0.5 (always in sec-1 for G; cftau is dimensionless), creating a matrix of cftau-

G combinations.  For each combination, we examined the model’s mass balance

properties.  Note that we were unable to compare the behavior of the model with an

analytical solution, because such a solution does not exist for a quadratic sloping beach.

Also note that previous work has shown that mass balance errors, as computed with a

finite volume approach, correlate well with truncation errors.

The average mass balance error for each combination is shown as a surface plot in

Figure 3.14.  The mass balance error was calculated using the finite volume approach,

which is described in Section 3.1.3.  We offer several observations.  First, the model is

unstable for the same region of cftau-G combinations, as it was for the linear sloping

Figure 3.14.  Mass balance errors for 144 combinations of cftau and G.  The
errors on the vertical axis are shown in intervals of 5,000 square meters.
The errors in the region where cftau and G are near maximum are 500
square meters or less.
100



beach, namely when both parameters are decreased below 0.001.  Second, the shape of the

three-dimensional surface is similar to the shape of the surface for the linear sloping beach

in Figure 3.9.  The only exception is a spike in this graph at the combination of cftau = 0.5

and G = 0.000001.  However, although the shapes of the two graphs are similar, the

magnitude of the mass balance errors are slightly smaller for the quadratic sloping beach.

The errors in the region where cftau and G are large are on the order of 500 square meters,

or approximately 1.5 percent of the undisturbed water area.  And some errors are even

less; the minimum occurs at the combination of cftau = 0.5 and G = 0.05, where the

average mass balance error is 16.3 square meters, or approximately 0.05 percent of the

undisturbed water area.  The corresponding error for the linear sloping beach was 41.1

square meters, or 0.07 percent of the undisturbed water area.  Overall, as the values of

cftau and G increase, the model’s mass balance properties improve.

We were unable to quantitatively assess (a la Figure 3.7) the algorithm’s impact on

accuracy because we do not have an analytical solution for a quadratic sloping beach.

However, we believe the behavior is similar to that observed for the linear sloping beach;

large values for cftau prevent the wetting and drying algorithm from capturing the

behavior of the shoreline.  Figures 3.15 and 3.16 show the position of the shoreline for

different resolutions and combinations of cftau and G.  In Figure 3.15, we show the

combination of cftau = 0.0001 and G = 0.01, which was in the region of optimal accuracy

for the linear sloping beach.  Note that the normal coarse grid solution (blue line) of  =

250 meters and  = 10 seconds provides a reasonably close match to the fine grid

solution (red line) of  = 100 meters and  = 1 second.  However, if we increase the

value of cftau, as in Figure 3.16, we do not achieve nearly as good of a match.  The coarse

Δx

Δt

Δx Δt
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Figure 3.15.  The position of the shoreline for the combination of cftau =
0.0001 and G = 0.01.  The blue line is a coarse solution (  = 250 meters,

 = 10 seconds), and the red line is a fine solution (  = 100 meters, 
= 1 second).

Δx
Δt Δx Δt

Figure 3.16.  The position of the shoreline for the combination of cftau =
0.01 and G = 0.01.  The blue line is a coarse solution (  = 250 meters, 
= 10 seconds), and the red line is a fine solution (  = 100 meters,  = 1
second).
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solution recedes 700 meters farther down the shoreline than does the fine solution, and

there is a lag in the drying phase.  In addition, when compared with Figure 3.15, the range

of inundation and recession is considerably smaller.  The maximum inundation is down

from 16.2 kilometers to 15.2 kilometers, and the maximum recession is up from 8.75

kilometers to 10.0 kilometers.  The larger value of cftau prevents the algorithm from

wetting and drying as much of the beach, because, as cftau increases, so does the bottom

friction.  Thus, although we cannot quantitatively assess the impact of these parameters on

the accuracy of the algorithm, our qualitative analysis suggests that they behave similarly

for quadratic sloping and linear sloping beaches.

3.2.2.3.  Parameter Sensitivity - Hmin and Umin

Another pair of numerical parameters is Hmin and Umin, described above in Section

3.1.1 and Section 3.2.1.4.  Both parameters affect the ability of the algorithm to wet or dry

nodes, so it is important to consider the effects of the two parameters in tandem.

We accomplished this by varying each parameter from 0.0001 to 0.5 (meters for

Hmin; meters per second for Umin), creating a matrix of combinations.  For these runs, we

again used cftau = 0.0001 and G = 0.01 sec-1, partially to match the study on Linear

Problem 2 in Section 3.2.1.4 and partially because we believe this is an accurate

combination, based on the parameter sensitivity results in Section 3.2.1.3 and Section

3.2.2.2.  For each combination of Hmin and Umin, we examined the model’s mass balance

properties.

The examination of the model’s mass balance properties was performed in the

same manner as described in Section 3.1.3.  The mass balance error was calculated by
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computing the difference between the global accumulation and the global mass flux.  A

three-dimensional surface of average mass balance error over four tidal cycles is shown in

Figure 3.17, and it reveals the following.  First, the model does not experience instabilities

for any combination of Hmin and Umin within the range from 0.0001 to 0.5.  Second, as

with the linear sloping problem, the wetting criterion Umin does not have an effect on mass

balance for the quadratic sloping beach.  There is not a significant difference between the

average mass balance errors for the extreme values of Umin = 0.0001 meters per second

and Umin = 0.5 meters per second.  Third, the average mass balance errors decrease as

Hmin is increased.  The errors decrease from a steady 900 square meters when Hmin is less

than 0.01 meters to about 250 square meters when Hmin = 0.5 meters.  Fourth, as with the

cftau-G test, the average mass balance errors are slightly smaller for the quadratic sloping

beach than they are for the linear sloping beach.  The plateau of 900 square meters in

Figure 3.17.  Mass balance errors for a range of Hmin and Umin values.
(See Section 3.1.3.)  The errors on the vertical axis are shown in intervals
of 200 square meters.
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Figure 3.17 is about 2.8 percent of the undisturbed water area for the quadratic sloping

beach, while the plateau of 11 square meters in Figure 3.11 is about 3.1 percent of the

undisturbed water area for the linear sloping beach.  We believe this behavior is a function

of the geometry; the wetting and drying region is shallower on the quadratic sloping

beach, and thus the algorithm has less of an effect on the global water budget.  Overall,

however, the mass balance results are remarkably similar.

A qualitative assessment of the effect of these two parameters reveals that it is best

to keep Hmin below a reasonable limit.  Figure 3.18 and Figure 3.19 show the position of

the shoreline for two different combinations of Hmin and Umin, each compared to a fine

solution.  Figure 3.18 shows the combination of Hmin = 0.01 and Umin = 0.01, which has

been used for most of the studies in this paper.  It shows a reasonably good match between

the coarse and fine solutions, and the coarse solution ranges from a maximum inundation

Figure 3.18.  The position of the shoreline for the combination of Hmin =
0.01 and Umin = 0.01.  The blue line is a coarse solution (  = 250 meters,

 = 10 seconds), and the red line is a fine solution (  = 100 meters, 
= 1 second).
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of 16.25 kilometers to a maximum recession of 8.75 kilometers.  Figure 3.19 shows the

combination of Hmin = 0.5 and Umin = 0.01.  By increasing Hmin, we have decreased the

average mass balance error from about 900 square meters to about 250 square meters.

However, we have also dramatically changed the accuracy.  The match between the coarse

and fine resolutions is not as good, and the maximum inundation is 15 kilometers and the

maximum recession is 7.7 kilometers.  The unrealistically large value of Hmin = 0.5 meters

allows the algorithm to dry nodes that should be wet, and it also prevents the wetting

phase to extend as far up the beach.  Again, without an analytical solution, there is no way

to know which representation of the shoreline is correct.  However, our experience with

the linear sloping beach suggests that an unrealistic value for Hmin produces unrealistic

results.

Figure 3.19.  The position of the shoreline for the combination of Hmin =
0.5 and Umin = 0.01.  The blue line is a coarse solution (  = 250 meters,

 = 10 seconds), and the red line is a fine solution (  = 100 meters, 
= 1 second).

Δx
Δt Δx Δt
106



Thus, results indicate an optimal value for these two parameters Hmin and Umin is

around 0.01.  There does not appear to be a lower limit for either parameter; however,

nothing is gained by decreasing either parameter to the limits of machine precision.  We

will continue to use values of 0.01 for both parameters in subsequent tests.

3.2.2.4.  Spatial Resolution

Spatial resolution also plays a significant role in the simulation of wetting and

drying, because it controls the model's ability to follow the position of the shoreline as it

inundates and recedes.  Using the Quadratic Problem, we varied the spatial resolution

from a minimum of 100 meters to a maximum of 2000 meters, where each test maintained

a constant .  For each grid spacing, we examined the model's mass balance properties.

Figure 3.20 shows the mass balance errors for the various spatial resolutions.  The

graph shows a sublinear (0.38) convergence rate as the grid spacing is decreased.  Note

Δx

Figure 3.20.  Mass balance errors (103 square meters) for a range of spatial
resolutions.  (See Section 3.1.3.)
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that all of the simulations were run with a time step of 10 seconds except for those with

spatial resolutions of 100 meters and 120 meters, which were run with a time step of 1

second in order to maintain stability.  This graph supports the use of the finite volume

approach as a predictor of model truncation error because, as the grid spacing is

decreased, the mass balance errors also decrease. 

3.2.3.  Inlet Problem

The results in this subsection are from tests on a one-dimensional slice of the

Shinnecock Inlet.  First, we examine the algorithm’s effect on temporal stability.  Second,

we conduct parameter sensitivity studies for bottom friction and the numerical G

parameter.  Third, we conduct parameter sensitivity studies for the wetting and drying

parameters Hmin and Umin.  Fourth, we examine the effect of spatial resolution on the

performance of the algorithm.

3.2.3.1.  Heuristic Stability

Stability was measured by determining the maximum time step (within 5 seconds)

at which the model still provided valid results.  In order to prevent instabilities during the

ebb phase when nodes should dry but cannot, we altered our model problem so that it can

be run with the original model.

For the Inlet Problem, we shortened the domain to 52.8 kilometers so that there is a

bathymetry of 2.5 meters at the land boundary.  This prevents the 1 meter forcing

amplitude from trying to dry out nodes within the inlet itself.  All of the other parameters,

including bathymetry, remained the same.  The original ADCIRC model provided a
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maximum stable time step of 45 seconds.  The wetting and drying model, when applied to

the unaltered Inlet Problem, provided a maximum stable time step of 40 seconds, which is

a decrease of 11 percent.  In comparison to the previous model problems, the wetting and

drying region for the Inlet Problem is a much smaller fraction of the overall domain, so the

stability constraint is not as severe.

3.2.3.2.  Parameter Sensitivity - cftau and G

The effects of the ADCIRC model parameters cftau and G on the wetting and

drying algorithm were again examined.  As described above in Section 3.2.1.3, the

parameter cftau controls the bottom friction in the model, and the parameter G controls the

balance between the wave continuity equation and the primitive continuity equation.

Herein, we examine their effects on wetting and drying by varying the parameters from

0.000001 to 0.5 (always in sec-1 for G; cftau is dimensionless), creating a matrix of cftau-

G combinations.  For each combination, we examined the model’s mass balance

properties.  Note that we were unable to compare the behavior of the model with an

analytical solution, because such a solution does not exist for the Inlet Problem.

The average mass balance error for each combination is shown as a surface plot in

Figure 3.21.  The mass balance error was calculated using the finite volume approach,

which is described in Section 3.1.3.  We offer several observations.  First, nearly the same

region of cftau-G combinations is unstable for the Inlet Problem, as had been unstable for

the Quadratic Problem and the two Linear Problems.  The unstable region is slightly larger

for the Inlet Problem, especially when G is small (such as the combination of cftau = 0.01

and G = 0.000001).  Second, the shape of the three-dimensional surface is similar to the
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shapes of the surfaces for the other problems, as shown in Figure 3.9 and Figure 3.14.

However, for this problem, even the stable combinations that have a small G value (such

as cftau = 0.1 and G = 0.000001) experience significant mass balance errors and should

not be used, which was not necessarily the case for the previous two model problems.

Also, for this problem, there is not as much variation in the “good” region of combinations

(i.e., where G is at least 0.01).  In this region, a slice of the matrix with a constant G value

shows mass balance errors that are all within one order of magnitude, whereas a similar

slice for the Quadratic Problem shows errors that vary over two orders of magnitude.

Also, when compared to the undisturbed water area of 2.07 million square meters, these

relative mass balance errors are significantly smaller.  The minimum mass balance error

occurs at the corner of the matrix where cftau = 0.5 and G = 0.5 and has a value of 58.8

square meters, or 0.003 percent of the undisturbed water area.  The mass balance error at

Figure 3.21.  Mass balance errors for 144 combinations of cftau and G.  The
errors on the vertical axis are shown in intervals of 5,000 square meters.
The errors in the region where cftau and G are near maximum are 300
square meters or less.
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the combination of cftau = 0.0001 and G = 0.01 is 386.3 square meters, or 0.02 percent of

the undisturbed water area.  Thus, although the magnitude of mass balance errors for the

Inlet Problem are similar in magnitude than the errors for the previous model problems,

the larger size of the Inlet Problem diminishes their significance.

This problem is an interesting test of the wetting and drying algorithm because the

minimum bathymetry occurs about three kilometers from the land boundary.  In fact, this

minimum bathymetry of 0.94 meters is the only place where the bathymetric depth is less

than the 1.0 meter forcing amplitude.  This node is located just inside the inlet opening,

and, when it dries, the rest of the inlet is forced to dry as well, as described in Section

3.1.2.  Thus, the wetting and drying processes do not occur gradually, as for the previous

model problems.  As the node near the inlet opening is dried, so is the rest of the inlet; and

as that node is wetted, so is the rest of the inlet.  Thus, the mass balance errors in the

“good” region of the matrix (where G > 0.01) may be smaller for the Inlet Problem

because the wetting and drying processes happen less often overall.

A quantitative assessment of the effect of cftau and G on accuracy could not be

performed, because there is no analytical solution for the Inlet Problem.  However, a

review of the position of the wetting and drying interface for each combination suggests

that accuracy may be significantly hindered when cftau is larger than 0.005.  For smaller

values of cftau, the wetting and drying processes occur four times, once for each tidal

period.  As cftau is increased above that value, the wetting and drying processes may

occur only one or two times or not at all, depending on the value of G.  This makes sense

physically; as cftau is increased, so is the bottom friction, which would work to dampen

the 1.0 meter forcing amplitude to where it would not have as much of an effect on a node
111



that is more than 50 kilometers into the domain.  Thus, users who wish to allow near-shore

wetting and drying should select an appropriately small value of the bottom friction

coefficient.

3.2.3.3.  Parameter Sensitivity - Hmin and Umin

The numerical parameters Hmin and Umin are described above in Section 3.1.1.

Both parameters affect the ability of the algorithm to wet or dry nodes, so it is important to

consider the effects of the two parameters in tandem.  Each parameter was varied from

0.0001 to 0.5 (meters for Hmin; meters per second for Umin), creating a matrix of

combinations.  For these runs, we again used cftau = 0.0001 and G = 0.01 sec-1, to match

the studies in Section 3.1.4 and Section 3.2.3.  For each combination of Hmin and Umin, we

examined the model’s mass balance properties.

The examination of the model’s mass balance properties was performed in the

same manner as described in Section 3.1.3.  The mass balance error was calculated by

computing the difference between the global accumulation and the global mass flux.  A

three-dimensional surface of average mass balance error over four tidal cycles is shown in

Figure 3.22, and it reveals the following.  First, the model does not experience instabilities

for any combination of Hmin and Umin within the range from 0.0001 to 0.5.  Second, as

with the previous two model problems, the wetting criterion Umin does not have an effect

on mass balance.  There is not a significant difference between the average mass balance

errors for the extreme values of Umin = 0.0001 meters per second and Umin = 0.5 meters

per second.
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Third, and most importantly, the shape of the surface is different from that of the

previous two model problems.  For both the Linear Problems and the Quadratic Problem,

the average mass balance errors increased until about Hmin = 0.01, and then they leveled

off.  For the Inlet Problem, the errors follow the same pattern until Hmin = 0.05, but then

they decrease to new minimums as Hmin is decreased further.  The unrealistically large

values of Hmin cause premature and excessive drying of the inlet region.  Figure 3.23 and

Figure 3.24 show the position of the wet/dry interface for two different values of Hmin.  In

Figure 3.23, where Hmin = 0.5 meters, the drying process occurs earlier in each tidal

period than it does in Figure 3.24, where Hmin = 0.0001 meters.  This causes problems,

especially in the first tidal period where the inlet is fully dried and wetted twice.  The

average mass balance errors are noticeably larger for the case when Hmin is larger.

Figure 3.22.  Mass balance errors for a range of Hmin and Umin values.
(See Section 3.1.3.)  The errors are shown in intervals of 100 square
meters.
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Thus, both the quantitative mass balance results and the qualitative accuracy

results indicate that Hmin should be kept at or below 0.01 meters, at most, and there does

not appear to be a penalty for decreasing it even further.  Once again, the wetting criterion

Umin does not have an effect on mass balance.

Figure 3.23.  Position of the shoreline for the Inlet Problem.  Note that Hmin
= 0.5 meters and Umin = 0.01 meters per second.

Figure 3.24.  Position of the shoreline for the Inlet Problem.  Note that Hmin
= 0.0001 meters and Umin = 0.01 meters per second.
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3.2.3.4.  Spatial Resolution

The effect of spatial resolution on mass balance was once again considered.

Instead of using the variable spacing that is natural for the Inlet Problem, we used a

constant grid spacing.  Nodal bathymetries were interpolated by fitting a cubic spline to

the data from the two-dimensional grid.  The number of elements was varied from 25 to

400, and the corresponding spacings were varied from a maximum of about 2.3 kilometers

to a minimum of 142 meters.  We tried to hold the time step at a constant 10 seconds, but

the fine resolutions (i.e., with 300 elements or more) required a smaller time step of 1

second.

Figure 3.25 shows the mass balance errors for the various spatial resolutions.  Note

that the mass balance errors do not converge as the grid spacing is refined.  In fact, many

of the smaller grid spacings produce anomalously large mass balance errors.  For instance,

Figure 3.25.  Mass balance errors (103 square meters) for a range of spatial
resolutions.  (See Section 2.3.)
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a grid spacing of 284 meters (200 elements) produces a mass balance error of about 397

square meters.  This behavior may be caused by extra wetting and drying in these

simulations, as described above in Section 3.2.3.3.  Figure 3.26 and Figure 3.27 show the

Figure 3.26.  The position of the shoreline for the Inlet Problem.  Note that
the grid spacing is about 586 meters (100 elements).

Figure 3.27.  The position of the shoreline for the Inlet Problem.  Note that
the grid spacing is about 284 meters (200 elements).
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position of the shoreline for two different spatial resolutions.  Note that in Figure 3.27,

where the grid spacing is smaller, there is extra wetting and drying during the second tidal

cycle.  The inlet is actually turned off and on twice during the same period, and this

additional wetting and drying may cause the larger mass balance error.

As described in Section 3.1.1, the algorithm includes input parameters that can be

used to prevent the rapid wetting and drying of the same node.  We increased these

parameters from 5 time steps to 50 time steps, but the model behavior remained the same,

as shown in Figure 3.28.  Thus, this behavior may just be start-up noise, and not a product

of the algorithm itself.  Note that both simulations (Figure 3.26 and Figure 3.27) fight

through this start-up noise and provide similar results for the third and fourth tidal periods.

It should also be noted that all of the mass balance errors shown in Figure 3.25 are

very small when compared to the actual size of the Inlet Problem.  For instance, the

Figure 3.28.  The position of the shoreline for the Inlet Problem.  Note that
the grid spacing is about 284 meters (200 elements), and that each node is
required to remain dry or wet for 50 time steps before changing states.
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maximum error of about 397 square meters is only about 0.02 percent of the undisturbed

water area.  Thus, although the extra wetting and drying can cause greater mass balance

errors, these errors are still relatively small.  Spatial resolution appears to have only a

secondary effect on mass balance.

3.3.  Conclusions

The results from the wetting and drying studies using the one-dimensional

ADCIRC model are promising.  We offer the following conclusions:

• ADCIRC’s wetting and drying algorithm can simulate wave run-up on beaches,

even one tidal period after a cold start.  Most start-up noise is concentrated in the

first two tidal periods, after which the model provides better results.

• The algorithm imposes stability restrictions, which can be severe depending on the

extent of the wetting and drying.  Our Linear Problem 2 experienced a 70 percent

reduction in the maximum stable time step, and the Quadratic Problem experi-

enced a 66 percent reduction.  For the Inlet Problem, where the region of wetting

and drying is smaller, the decrease was 11 percent.

• The numerical parameter G must remain relatively large (i.e., greater than 0.001

sec-1), especially for typical values of cftau in the range from 0.001 to 0.00001.

However, combinations of cftau and G in that range show reasonable mass balance

errors and values of  in the same range as for non-wetting/drying barotropic

applications.

• The minimum wetness height Hmin shows acceptable behavior for all values less

than or equal to 0.01 meters.  Our results do not suggest that there is a lower bound

G τ⁄
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for this parameter.  In fact, for the Inlet Problem, mass balance errors continued to

decrease as Hmin was decreased to 0.0001 meters.

• The minimum wetting velocity Umin has no significant effect on the behavior of

the model, for any of the four model problems.

• For the idealized model problems, accuracy and mass balance improve as the spa-

tial resolution is refined.  That trend was not evident for the Inlet Problem.  How-

ever, for all four problems, a stability restriction prevents simulations with small

grid spacings from being run with the same time step of 10 seconds.

These results are helpful in that they: (1) benefit users who, to this point, may have relied

on nothing more than personal experience when they selected run-time parameters such as

time step, roughness coefficient, wetness and drying heights, etc.; and (2) prove that the

existing ADCIRC wetting and drying algorithm is robust.  The eventual goal of this

research is to implement the algorithm in the three-dimensional ADCIRC model, but first

we should test its behavior in the vertical dimension by implementing and assessing it in a

two-dimensional, x-z slice ADCIRC model.
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4.  Two-Dimensional Wetting and Drying

One of the purposes of this research thesis is to implement and assess ADCIRC’s

wetting and drying algorithm in a three-dimensional version of the model.  We will

address that task in Chapter 5.  However, before doing so, we will implement and assess

the algorithm in a two-dimensional (x-z) version of the model, for two reasons.

First, by adding only one extra dimension at a time, we are able to control the

number of new model parameters and assess the model’s behavior in stages.  The main

difference between the one-dimensional and two-dimensional (x-z) models is that the two-

dimensional (x-z) model does not solve for a depth-averaged velocity; instead, the

velocities at a user-specified number of layers are computed.  (For most of the studies in

this chapter, we specified 11 vertical layers.)  This treatment of velocity is similar to that in

the three-dimensional model, so it is a good opportunity to test the wetting and drying

algorithm.  At the same time, though, the two-dimensional (x-z) ADCIRC model can be

applied to problems that are very similar to the model problems used in Chapter 3.  (The

Linear Sloping Beach domain in this chapter is similar to Linear Problem 2 in the previous

chapter.)  The similarities of these model problems provide a framework with which we

can judge the results in this chapter.

Second, as we will describe in Section 4.1.2, the wetting and drying algorithm was

updated after the one-dimensional studies in Chapter 3 were completed.  Two parameters

were removed entirely, and the algorithm itself was lengthened.  These updates were
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implemented to address specific situations where the original wetting and drying

algorithm struggled.  We will show that the updates were necessary and beneficial.

However, we would rather test the effects of the improved algorithm by using the two-

dimensional (x-z) ADCIRC model, because its run-times are understandably smaller.  If

we can establish the worthiness of the improved algorithm here, then our burden of proof

will be more manageable in three dimensions.

Third, this study of the two-dimensional (x-z) ADCIRC model is necessary

because, without it, wouldn’t be able to pass 200 pages on this thesis.  And that is an

important goal.

The structure of this chapter is similar to that for the one-dimensional wetting and

drying algorithm.  We will discuss our methods, including a description of how the

algorithm was implemented in the two-dimensional (x-z) model.  We will present the

results of our numerical experiments on our two model problems.  And we will draw

conclusions based on those results.

4.1.  Methods

This subsection contains a discussion of how the wetting and drying algorithm was

implemented in this form of the ADCIRC model, an introduction of the two major

changes to the algorithm since the study of the one-dimensional model in Chapter 3, a

description of the two model problems used in this chapter, and a review of the two error

measures used in our numerical experiments.
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4.1.1.  Implementation in 2D (x-z) ADCIRC

The wetting and drying algorithm for the two-dimensional (x-z) ADCIRC model

occurs in the middle of the time step, between the solution of the GWC equation (for water

surface elevations) and the solution of the momentum equation (for velocities or fluxes).

This algorithm did not exist previously in this form of the ADCIRC model, so we

developed and implemented it based on the algorithm currently in the two-dimensional (x-

y) ADCIRC model.  To ensure its compatibility with the two-dimensional (x-z) version,

we made two changes.

First, the algorithm was added as its own subroutine.  This choice was made

primarily for ease of coding; instead of having several hundred lines of wetting and drying

code in the middle of another subroutine, the code exists as its own unit.  If the wetting

and drying algorithm is ever modified or re-designed, then it will be easier to simply swap

in the new algorithm as its own subroutine.

Second, we updated the subroutines that solve for water surface elevations,

horizontal velocities, and vertical velocities.  As noted earlier in Section 3.1.1, dry regions

are not technically dry; the water depth at a dry node can be larger than zero, so long as it

is less than the user-specified Hmin.  Thus, a thin film of water can exist at dry nodes.  This

water should not contribute to the continuity or momentum computations at a neighboring

wet node.  If a wet node is connected to a dry node, then the contribution from the dry

node is not included in the summation.
122



4.1.2.  Updates to the Wetting and Drying Algorithm

In the summer of 2004, two changes were made to the wetting and drying

algorithm.  First, the two parameters NODEDRYMIN and NODEWETMIN were

eliminated.  Second, an elemental drying check was added.

The first change relates to the propagation of waves on relatively flat flood plains.

The user specified the two parameters in the input file, and they were used to control how

long a node had to remain either dry or wet.  Thus, if NODEDRYMIN was set to 20, then

any node had to remain dry for at least 20 time steps.  These parameters were included

originally to control oscillations at the wetting front, but it was discovered that they also

slowed the propagation of flood waves.  To prevent this, the two parameters were removed

from the algorithm.

The second change relates to the flow of water down a steep incline.  It was

discovered that the simple momentum balance used in the node-based wetting check

allowed “barely wet” nodes to remain active in areas with steep topography.  Thus, a thin

film of water would be allowed to remain wet if it was on an incline where water was

flowing from above.  Mass balance problems occurred in these regions.  To prevent this, a

new parameter, HOFF, was hardwired into the code, and it is set to 120 percent of the Hmin

parameter.  (The “120 percent” criterion was an ad hoc selection; nonetheless, it works.)

If any of the nodes on an element has a water depth that is less than HOFF, then the

element itself is dried.  This change allows water to build up on an incline before it is

allowed to flow downhill.

We will use this study of the two-dimensional (x-z) model to test the relative

behavior of the “original” and “improved” wetting and drying algorithms.  All of our
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numerical experiments will be run twice, (once for each version of the wetting and drying

algorithm,) so that their behavior can be quantified.  We expect the improved algorithm to

show significantly better results in model problems that contain the features for which it

was designed.

4.1.3.  Model Problems

The purpose of this study of the two-dimensional (x-z) ADCIRC model is to verify

that its wetting and drying algorithm(s) behaves similarly to that of the one-dimensional

ADCIRC model that was examined in Chapter 3.  We will examine the three-dimensional

wetting and drying algorithm in Chapter 5.  Thus, in this chapter, we will examine only

two model problems: the Linear Sloping Beach domain and the Plateau domain.

A schematic of the Linear Sloping Beach domain is similar to the linear beach

domains used in Chapter 2 and Chapter 3.  This problem has the following parameters

(unless stated otherwise): a linear slope, an undisturbed length of 18 kilometers, a

bathymetric depth at the open ocean boundary of 6 meters, a grid spacing of 250 meters,

11 vertical layers, a time step of 1 second, a forcing amplitude of 1.0 meter, a tidal period

of 12 hours (43,200 sec), a duration of 4 tidal periods, a Kslip value of 0.0001 and a G

value of 0.01 sec-1, an Hmin value of 0.01 meters, and a Umin value of 0.01 meters per

second.  Note that we have backed off the time step to 1 second (compared to 10 seconds

in Chapter 3), and we have adopted the “optimal” conditions established in the study of

the one-dimensional model.  The added dimension in the z-direction affects the bottom

friction (which is controlled by the Kslip parameter, as we will discuss in Section 4.2.1.2)

and adds the ability to specify the number of vertical layers (which we will discuss in
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Section 4.2.1.5).

The Plateau domain is shown in Figure 4.1, and it was designed to test the

improved wetting and drying algorithm.  Specifically, there are two features that

distinguish it from the Linear Sloping Beach domain.  First, the Plateau domain has a 6-

kilometer long region where the bathymetry is a constant 0.5 meters above sea level.  This

feature should test the improved algorithm’s ability to simulate flood waves, which tended

to be slowed down by the NODEDRYMIN and NODEWETMIN parameters in the original

algorithm.  The forcing amplitude is 1 meter at the open ocean boundary, so the waves

should wet the sloped beach and then flow across the flat region.  Second, the Plateau

domain has sloped regions that are 50 percent steeper than the Linear Sloping Beach.  This

feature should test the improved algorithm’s new elemental drying check, which was
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Figure 4.1.  A schematic of the bathymetry for the Plateau domain.  The
flat region has a bathymetry of 0.5 meters (above sea level) and extends
between the x-distances of 21 kilometers to 27 kilometers.
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added to better simulate flow down steep inclines.  As the tide recedes, water from the flat

region should drain down the incline.  In addition to those two features, this problem has

the following parameters (unless stated otherwise): a total length of 30 kilometers, an

undisturbed water length of 20 kilometers, a bathymetric depth at the open ocean

boundary of 10 meters, a grid spacing of 250 meters, 11 vertical layers, a time step of 1

second, a forcing amplitude of 1.0 meter, a tidal period of 12 hours (43,200 sec), a

duration of 4 tidal periods, a Kslip value of 0.0001 and a G value of 0.01 sec-1, an Hmin

value of 0.01 meters, and a Umin value of 0.01 meters per second.

4.1.4.  Error Computations

In this chapter, we use the same error measures as for the previous wetting and

drying studies.  For the Linear Sloping Beach domain, we can compare our numerical

results and the analytical solution described in Section 3.2.1.1.  The domain is sliced at

 meters to obtain results that can be compared with the one-dimensional

analytical solution.  Then we examine the position of the wet/dry interface over the fourth

tidal period (because the model is spun up from a cold start for the first three periods).

After every 10 minute interval in that fourth period, we calculate the difference between

the position of the interface given by the numerical results and the position of the interface

given by the analytical solution.  These differences are then averaged.  If the numerical

results successfully approximate the analytical solution, then the average difference

should be zero.  However, spatial discretization often prevents a perfect match between

numerical and analytical, so we are satisfied if the average difference is less than the grid

spacing of 250 meters.  Also, it is important to remember that the analytical solution does

y 6000=
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not include bottom friction, so optimal ADCIRC results will occur at relatively low values

of that parameter.

The second error measure is an examination of mass balance.  Again, we use a

procedure similar to that from the one-dimensional wetting and drying study.  It is

calculated using a finite volume approach, where we compute the difference between the

global accumulation and the global mass flux, as represented by the vertically-averaged

primitive continuity equation.  Recently, several papers [1, 8] have advocated computing

mass balance from finite element residuals in order to be consistent with the numerical

discretization.  However, we have shown (Kolar et al. [13]) the finite volume approach to

be a good surrogate variable for accuracy and phasing errors; that is, small mass balance

errors (as computed with finite volume) correlate with small constituent errors.

Additionally, in Chapter 2, we showed that the finite volume method is a good indicator of

truncation errors, especially for domains that have a constant node spacing.  Hence our

reason for using the finite volume approach herein.

4.2.  Numerical Experiments

This subsection contains the results of numerical experiments conducted using the

Linear Sloping Beach domain and the Plateau domain.

4.2.1.  Linear Sloping Beach Domain

This subsection contains the results of five numerical experiments: heuristic

stability, parameter sensitivity with G and Kslip, parameter sensitivity with Hmin and Umin,

horizontal resolution, and vertical resolution.
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4.2.1.1.  Heuristic Stability

To examine the stability of the two versions of the two-dimensional wetting and

drying algorithm, we increased the time step (in increments of 5 seconds) until the model

became unstable.  The heuristic stability results for the two versions of the wetting and

drying algorithm are shown in Table 4.1.  Note that there is not a significant difference

between the two versions of the algorithm.  Both show maximum stable time steps of 30

seconds, and each version has a slight advantage in either mass balance error or accuracy.

4.2.1.2.  Parameter Sensitivity - Kslip and G

As discussed in Section 3.2.1.3, two important parameters in the ADCIRC model

are the bottom friction and the numerical parameter G (sometimes called ).  In two (x-z)

dimensions, bottom friction is implemented as a term in the vertical stress calculation:

Table 4.1: Summary of heuristic stability results for the two versions of the
wetting and drying algorithm.  The two versions do not show significant
differences for the Linear Sloping Beach domain.  Note that mass balance
error is an average error over all four tidal cycles, while the difference
between the shoreline from the numerical results and the shoreline from
the analytical solution is an average over only the fourth tidal cycle.

Original
Algorithm

Improved
Algorithm

Maximum stable time step 30 sec 30 sec

Mass balance error 627.232 m2 608.442 m2

Average difference from 
analytical solution

177.384 m 180.856 m

τ0
128



, (1)

where  is the bottom stress;  is the reference density of water; u is the velocity; j is

the node index; and Kslip is the bottom boundary condition.  For a “no slip” bottom

boundary condition:

. (2)

For a “linear slip” bottom boundary condition:

. (3)

And, for a “quadratic slip” bottom boundary condition:

, (4)

where Cd is a quadratic drag coefficient.

The two-dimensional (x-z) ADCIRC model does not include all three types of

bottom boundary condition; only the linear slip bottom boundary condition is available.

The results shown in this section utilize that linear slip bottom boundary condition, where

Kslip is a user-specified constant.  We varied both Kslip and G from 10-5 to 10-1 (sec-1 for

G, unitless for Kslip), creating a test matrix of 25 combinations of Kslip and G.  Then we

examined the effect of each combination on the model’s accuracy and mass balance

properties, for both the original and improved versions of the wetting and drying

algorithm.

Figure 4.2 shows the average difference between the shoreline predicted by the

numerical results and the shoreline predicted by the analytical solution, for the original

version of the wetting and drying algorithm.  Figure 4.3 shows a similar graph for the

τbx j,
ρ0

---------- Kslip j, uj=

τbx ρ0

Kslip j, ∞→

Kslip j, constant=

Kslip j, Cd uj=
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improved algorithm.  First, note the similarity between both figures and the corresponding

Figure 3.7 from the one-dimensional results.  In all three studies, there exists a region

where the respective models are unstable, specifically where both of the bottom friction

and G parameters are relatively small.  The best match with the analytical solution occurs

in the region around Kslip = 0.0001 and G is relatively large, where the model is able to

predict the correct shoreline within one grid spacing.  However, the improved two-

dimensional (x-z) algorithm shows much better stability and a better match to the one-

dimensional results.  In fact, at the optimal combination of Kslip = 0.0001 and G = 0.01

sec-1 from the one-dimensional results, the improved algorithm has an average difference

from the analytical solution of about 180 meters, which is less than the grid spacing of 250

meters.  The improved algorithm is stable for more combinations of Kslip and G, and its

Figure 4.2.  For the original wetting and drying algorithm, the average
difference between the numerical results and the analytical solution over
the fourth tidal cycle, as discussed in Section 4.1.4, for 25 combinations of
Kslip and G.  The errors are shown in intervals of 1000 meters; the grid
spacing is 250 meters.
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results follow those from the one-dimensional study in Chapter 3.

Figure 4.4 shows the mass balance errors for the original algorithm, while Figure

4.5 shows the mass balance errors for the improved algorithm.  The difference between the

two versions of the algorithm becomes even more obvious.  For all combinations where

 sec-1, the original algorithm is either unstable or shows significantly worse mass

balance properties than the improved algorithm.  Again, note the similarity between the

mass balance results from the improved two-dimensional algorithm (Figure 4.5) and the

mass balance results from the one-dimensional algorithm (Figure 3.9).  Even in a model

domain that does not include the features for which the improved algorithm was designed

(such as a flood plain or a steep incline), it shows significant improvement.
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Figure 4.3.  For the improved wetting and drying algorithm, the average
difference between the numerical results and the analytical solution over
the fourth tidal cycle, as discussed in Section 4.1.4, for 25 combinations of
Kslip and G.  The errors are shown in intervals of 1000 meters; the grid
spacing is 250 meters.
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Figure 4.4.  For the original wetting and drying algorithm, mass balance
errors for 25 combinations of Kslip and G.  The errors are shown in intervals
of 1,000 square meters.  Note that the vertical scale has been cropped to
allow for a comparison with Figure 4.5; the combinations where Kslip is
relatively large and G is relatively small show mass balance errors that
range from about 40,000 square meters to 2,000,000 square meters.
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Figure 4.5.  For the improved wetting and drying algorithm, mass balance
errors for 25 combinations of Kslip and G.  The errors are shown in intervals
of 1,000 square meters.
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It should be noted that the original version of the two-dimensional (x-z) wetting

and drying algorithm has problems with the Linear Sloping Beach domain.  For example,

as shown in Section 4.2.1.1, the model is stable at a time step of 30 seconds and shows a

mass balance error of 627 square meters.  However, if the same combination of Kslip and

G is run at a time step of 1 second, as in Figure 4.4 or Figure 4.5, then the model is

unstable.  This behavior, where the original version of the algorithm is unstable at both

small and large time steps, is a significant problem.  Not only is this behavior an

inconvenience for users searching for a stable time step, it is also evidence of a bad

numerical algorithm.  Thus, it is good when the improved version of the algorithm is

stable at all time steps below its maximum of 30 seconds.

4.2.1.3.  Parameter Sensitivity - Hmin and Umin

The relevance of the Hmin and Umin parameters was established in Section 3.2.1.4;

this section repeats that sensitivity study for the two-dimensional (x-z) version of the

ADCIRC model.  Specifically, we will vary both parameters from 0.00001 to 1.0 (meters

for Hmin; m/sec for Umin) and examine their effects on accuracy and mass balance.

Figure 4.6 shows the average distance between the shoreline from the simulation

results and the shoreline from the analytical solution for the original version of the wetting

and drying algorithm.  Figure 4.7 shows a similar graph for the improved version.  Note

that, although the original version is unstable for combinations of Hmin and Umin where

 meters, the improved version is stable for all combinations.  And, for the

combinations where both versions are stable, the improved version produces slightly

better matches with the analytical solution.  For example, when  meters,

Hmin 0.01>

Hmin 0.0001=
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Figure 4.6.  The average distance between the shoreline from the solution
results and the shoreline from the analytical solution over the fourth tidal
cycle, for the original version of the wetting and drying algorithm.
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Figure 4.7.  The average distance between the shoreline from the solution
results and the shoreline from the analytical solution over the fourth tidal
cycle, for the improved version of the wetting and drying algorithm.  This
version is stable for all combinations.
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the shoreline from the original version is an average of 185 meters from the analytical

solution, while the shoreline from the improved version is only 172 meters away.  The best

matches occur when  meters for either version.

Figure 4.8 shows the mass balance errors for the original version of the wetting

and drying algorithm, while Figure 4.9 shows the mass balance errors for the improved

version.  The versions are stable or unstable for the same combinations, as from the

accuracy results in the previous paragraph.  Again, for the combinations where both

versions are stable, the improved version produces better mass balance errors.  For

example, when  meters, the original version produces mass balance errors

of about 760 m2, while the improved version produces errors of about 700 m2.  The best

results occur with the improved version of the wetting and drying algorithm with any
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Figure 4.8.  Mass balance errors over the first four tidal cycles for 36
combinations of Hmin and Umin, for the original version of the wetting and
drying algorithm.  Note that this version is unstable for combinations when
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combination where  meters; the mass balance errors for that scenario are

about 620 m2.  Thus, we will continue to use the combination of  meters and

 m/sec as our “optimal” condition.

Note that, like the results from the study of the one-dimensional ADCIRC model

in Chapter 3, these results again indicate that the Umin parameter does not affect the

performance of the model.  For both versions of the two-dimensional wetting and drying

algorithm, and for both error measures, the act of varying the Umin parameter has no

visible effect.
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Figure 4.9.  Mass balance errors over the first four tidal cycles for 36
combinations of Hmin and Umin, for the improved version of the wetting
and drying algorithm.  Note that this version is stable for all combinations.
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4.2.1.4.  Horizontal Resolution

Figure 4.10 shows the average distance between the shorelines from the simulation

results and the analytical solution, for varying horizontal resolutions.  Note that the black

line represents a one-to-one line; we have included it to show that the average distances

are always less than or equal to the grid spacing.  In fact, the simulated shoreline is always

about half a grid spacing away from the analytical shoreline.  For example, when the

improved algorithm is run with a grid spacing of 500 meters, the average error over the

fourth tidal cycle is about 260 meters.  This behavior makes sense; if the analytical

shoreline is more than a half grid spacing away from one node point, then it must be less

than a half grid spacing away from another node point.  Thus, for our “optimal”

Figure 4.10.  The average distance between the shorelines from the
simulation results and the analytical solution, for the original (blue line)
and improved (red line) versions of the wetting and drying algorithm, for
varying grid spacings.
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combination of G, Kslip, Hmin, and Umin, the wetting and drying algorithm consistently

matches the analytical solution within one grid space.

Figure 4.11 shows the mass balance errors for the original and improved versions

of the wetting and drying algorithm, for varying horizontal resolutions.  Three

observations can be made from this figure.  First, neither version of the algorithm

produces mass balance errors that converge as the horizontal resolution is refined.  The

mass balance errors from the improved version do decrease as the horizontal resolution is

decreased, but they do not converge to zero.  Second, the improved version is stable for

much smaller grid spacings.  The original version becomes unstable when the grid spacing

is 300 meters or less, while the improved version does not become unstable until the grid

spacing is 120 meters or less.  This improvement in stability is important for wetting and

Figure 4.11.  Mass balance errors over the four tidal cycles for the original
(blue line) and improved (red line) wetting and drying algorithms.  The
improved algorithm produces mass balance errors that are about an order
of magnitude smaller than those from the original algorithm.
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drying applications, which occur in near-shore areas where the grid spacing must be small

in order to represent the topography.  Third, the improved algorithm produces mass

balance errors that are about an order of magnitude smaller than those from the original

algorithm.  In fact, if we decrease the vertical extents, as in Figure 4.12, then we see that

the errors produced by the improved algorithm are not flat at all.  In fact, with the

exception of one or two fine resolutions where the model is near the point of becoming

unstable, the errors converge as the grid spacing is decreased.

4.2.1.5.  Vertical Resolution

To test the effect of the second (z) dimension, we varied the number of vertical

layers and examined their effect on accuracy and mass balance.  Basically, the number of
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Figure 4.12.  Mass balance errors over the first four tidal cycles for a range
of horizontal resolutions, for the improved wetting and drying algorithm.
Note that this figure is simply a close-up of part of Figure 4.11.
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layers has no effect.  We varied the number of layers from 6 to 251, for a fixed horizontal

spacing of 250 meters, and the error measures did not change.  Note that, for this set of run

parameters, the original algorithm was unstable for all vertical resolutions.  The improved

algorithm was stable all of the vertical resolutions we studied.  For all vertical resolutions,

the model shoreline is an average distance of 180 meters away from the analytical

shoreline, over the fourth tidal cycle.  And, again for all vertical resolutions, the mass

balance error is 622 m2, over all four tidal cycles.  Figure 4.13 and Figure 4.14 depict this

behavior.

It should be noted that the Linear Sloping Beach domain does not experience the

type of vertical mixing that would require refinement in the vertical direction.  As the tide

either inundates or recedes, the velocity field is dominated by the x-component.  Perhaps a
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Figure 4.13.  The average distance between the shorelines from the
simulation results and the analytical solution, for the improved version of
the wetting and drying algorithm, for varying vertical resolutions.  Note
that, for this set of run parameters, the original algorithm was unstable for
all vertical resolutions.
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more interesting model domain might induce vertical mixing, which in turn might depend

on vertical resolution.  In the next subsection, we will repeat these numerical experiments

for just such a domain.

4.2.2.  Plateau Domain

As discussed above in Section 4.1.3, the Plateau domain was designed to test the

behavior of the improved wetting and drying algorithm.  The domain features a flat region

to simulate tidal waves on a flood plain, and it also features a steeper slope to simulate thin

films of water draining downhill.  This subsection contains the results of five numerical

experiments: heuristic stability, parameter sensitivity with G and Kslip, parameter

sensitivity with Hmin and Umin, horizontal resolution, and vertical resolution.
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Figure 4.14.  Mass balance errors over the four tidal cycles for the
improved wetting and drying algorithm.  Note that, for this set of run
parameters, the original algorithm was unstable for all vertical resolutions.
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4.2.2.1.  Heuristic Stability

Table 4.2 summarizes the heuristic stability results for the Plateau domain and the

two versions of the wetting and drying algorithm.  Unlike the heuristic stability results in

Section 4.2.1.1 for the Linear Sloping Beach domain, these results do show a difference

between the two versions of the algorithm.  The improved algorithm increases the

maximum stable time step by 100 percent, while increasing the mass balance error by only

about 27 percent.  And, as we will show with the rest of the Plateau domain results, when

the time step is held steady at 1 second, the improved algorithm behaves better.

4.2.2.2.  Parameter Sensitivity - Kslip and G

To examine the effects of the roughness parameter Kslip and the numerical

parameter G, the two-dimensional (x-z) ADCIRC model was run using 36 combinations of

the two parameters.  Figure 4.15 shows the mass balance errors for the original wetting

and drying algorithm, and Figure 4.16 shows a similar graph for the improved algorithm.

These sensitivity results are as dramatic as the results for the Linear Sloping Beach

Table 4.2: Summary of heuristic stability results for the two versions of the
wetting and drying algorithm.  The two versions show significant
differences for the Plateau domain.  Note that mass balance error is an
average error over all four tidal cycles.

Original
Algorithm

Improved
Algorithm

Maximum stable time step 10 sec 20 sec

Mass balance error 15881.4 m2 20148 m2
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domain in Section 4.2.1.2.  The improved algorithm is unstable for roughly the same

combinations of G and Kslip as the original algorithm.  However, the improved algorithm

produces significantly smaller mass balance errors, which are more in line with the results

from both the one-dimensional and improved two-dimensional (x-z) ADCIRC models

applied to the Linear Sloping Beach domain (Figure 3.9 and Figure 4.5, respectively).

These results do not dissuade us of our belief that the optimal combination is

 sec-1 and .  The mass balance error is larger at that

combination than it is when the parameters are increased, but we saw similar behavior for

the Linear Sloping Beach domain, where this combination proved to be the most accurate.

Figure 4.15.  Mass balance errors for the original wetting and drying
algorithm applied to the Plateau domain, for a range of G-Kslip
combinations.  Note that we have cropped the vertical scale for comparison
to Figure 4.16; some combinations where G is small and Kslip is large are
stable, but they produce undesirably large mass balance errors.
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Thus, we will continue to use these values for G and Kslip, even though the original

wetting and drying algorithm is unstable at that combination.

4.2.2.3.  Parameter Sensitivity - Hmin and Umin

The effect of the wetting and drying parameters Hmin and Umin was examined by

varying each parameter from 0.00001 to 1.0 (meters for Hmin; m/sec for Umin), creating a

matrix of 36 combinations.  Figure 4.17 shows the mass balance errors produced by the

original wetting and drying algorithm, while Figure 4.18 shows a similar graph for the

improved algorithm.  Note that we are paying the price for our decision in the previous

section to use the combination of  sec-1 and ; the original

Figure 4.16.  Mass balance errors for the improved wetting and drying
algorithm applied to the Plateau domain, for a range of G-Kslip
combinations.
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Figure 4.17.  Mass balance errors for a range of Hmin-Umin combinations,
for the original wetting and drying algorithm.  Note that most combinations
cause the model to be unstable.
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Figure 4.18.  Mass balance errors for a range of Hmin-Umin combinations,
for the improved wetting and drying algorithm.
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algorithm is unstable for most combinations of Hmin and Umin, and it produces large errors

when it is stable.

The improved algorithm, on the other hand, is stable and produces reasonable

errors for all combinations.  Note that its smallest errors occur when Hmin is largest and

thus most restrictive; at  meters, the model is prevented from wetting the flat

region of the Plateau domain, and thus the mass balance errors are much better.  As with

previous results, the errors level off as Hmin is decreased, meaning that model users can

use any value of that parameter that is sufficiently small.  And, as with previous results,

the Umin parameter has negligible effects.

4.2.2.4.  Horizontal Resolution

Figure 4.19 shows the mass balance errors for a range of horizontal resolutions.

Now, the problems that existed for the horizontal resolution study with the Linear Sloping

Beach domain have been exacerbated.  The mass balance errors do not converge as the

resolution is refined; in fact, many of the largest errors occur when the grid spacings are

relatively small.  This behavior is a concern, because a good algorithm should behave

better as the resolution is refined.  We would propose that the Plateau domain is not a good

test of horizontal resolution because, at fine resolutions, more nodes are placed at the top

of the steep incline, where elements oscillate between being wet and dry and thus the mass

balance errors would be worst.  It may not be appropriate to expect convergence under

these conditions.  The Linear Sloping Beach domain does not incorporate this type of

bathymetry, and it shows convergence when the improved version of the wetting and

drying algorithm is used (as in Figure 4.12).  For the Plateau domain, the improved

Hmin 1.0=
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version does effect a significant reduction in the magnitude of the mass balance errors.

Thus, the horizontal resolution is useful, in the sense that it confirms that the improved

wetting and drying algorithm is better.

4.2.2.5.  Vertical Resolution

To study the effect of vertical resolution, the number of vertical layers was varied

from six layers to 201 layers for a horizontal resolution of 250 meters.  Figure 4.20 shows

the mass balance errors over the first four tidal cycles for that range of vertical resolutions.

Note that, although the improved algorithm was stable for every vertical resolution in that

range, the original algorithm was unstable at both the coarse end (six and 11 layers) and

the fine end (201 layers).  Also note the difference in magnitude between the mass balance
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Figure 4.19.  Mass balance errors over the four tidal cycles for the original
(blue line) and improved (red line) wetting and drying algorithms.  The
improved algorithm produces mass balance errors that are considerably
smaller than those from the original algorithm.
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errors from the two algorithms.  The original algorithm produces errors of about 25,000

m2, while the improved algorithm produces errors of about 5,000 m2.  That is a decrease

of about 80 percent.  The improved algorithm continues to behave significantly better.

Like the vertical resolution results in Section 4.2.1.5 from the Linear Sloping

Beach, these results show that the mass balance errors are not sensitive to vertical

resolution.  As the number of layers is increased, the errors do not converge toward zero.

The cause is the same; because this simulation is forced with a tide at the open ocean

boundary, the flow is unidirectional throughout the water column.  There is not enough

mixing to require additional resolution in the vertical direction, and thus the two-

dimensional (x-z) ADCIRC model is able to simulate the problem with only a few vertical

layers.  In the future, a vertical resolution study should be performed on a problem that is

guaranteed to have vertical mixing, such as a wind-driven or density-driven problem.
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Figure 4.20.  Mass balance errors over the first four tidal cycles for a range
of vertical resolutions, for the original (blue line) and improved (red line)
wetting and drying algorithms.  The improved algorithm reduces the mass
balance errors by about 80 percent.
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4.3.  Conclusions

This study of the two-dimensional (x-z) ADCIRC model attempted to answer two

related questions: (1) were the recent updates to the wetting and drying algorithm

beneficial?, and (2) does the two-dimensional (x-z) wetting and drying algorithm behave

similarly to the one-dimensional algorithm?

The recent updates to the algorithm were beneficial.  In every study in this chapter,

we have shown that the improved algorithm exhibits better stability or mass balance

properties, and usually both.  This finding is especially true with respect to the Plateau

domain, which was designed specifically to test the improved algorithm under the

conditions for which it was implemented.  In the Plateau domain, the improved algorithm

doubled the maximum stable time step, proved stable for a wider range of parameters than

did the original algorithm, and produced significantly lesser mass balance errors.  The

updates to the wetting and drying algorithm are worthwhile.

And, when the improved algorithm is used, the two-dimensional (x-z) ADCIRC

model produces results that are qualitatively similar to the results in Chapter 3 from the

one-dimensional model.  The Linear Sloping Beach domain shows the best behavior at the

combination of Kslip = 0.0001 and G = 0.01 sec-1, for both models.  The Hmin parameter

produces the best behavior when it is set to a relatively low value, such as 

meters.  The Umin parameter does not affect the performance of the models.  And both

versions of the ADCIRC model are sensitive to horizontal resolution.  These results are

encouraging, and they suggest that the wetting and drying algorithm can be implemented

in three dimensions without significant problems.

Hmin 0.01≤
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In Chapter 5, we will perform that implementation and assess the behavior of the

three-dimensional wetting and drying algorithm.  Unless stated otherwise, we will use the

improved version of the algorithm.
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5.  Three-Dimensional Wetting and Drying

One of the goals of this thesis is the implementation of the wetting and drying

algorithm in the three-dimensional version of ADCIRC.  Three-dimensional simulations

have become increasingly practical as computer architectures become faster and more

efficient.  And, in many applications of the model, the vertical profile and mixing in near-

shore regions are most important.  Thus, a three-dimensional version of ADCIRC with

wetting and drying would be beneficial.

In this chapter, we will discuss how the wetting and drying algorithm was

implemented in the three-dimensional ADCIRC model, and we will discuss the results of

a series of numerical experiments conducted on it.  We will show that it is possible to

simulate three-dimensional wetting and drying.  We will also show that the same optimal

set of model parameters applies in three dimensions, as did in lower dimensions in

Chapter 3 and Chapter 4.

5.1.  Methods

This subsection contains a discussion of how the wetting and drying algorithm was

implemented in this form of the ADCIRC model, an introduction of the two major

changes to the algorithm since the study of the one-dimensional model in Chapter 3, a
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description of the two model problems used in this chapter, and a review of the two error

measures used in our numerical experiments.

5.1.1.  Implementation in 3D ADCIRC

The wetting and drying algorithm for the three-dimensional ADCIRC model

occurs in the middle of the time step, between the solution of the GWC equation (for water

surface elevations) and the solution of the momentum equation (for velocities or fluxes).

The two-dimensional (x-y, not to be confused with the x-z study in Chapter 4) and three-

dimensional ADCIRC models exist as the same code and share many of the same features,

so the wetting and drying algorithm already exists in the two-dimensional (x-y) version.

To make it compatible with the three-dimensional version, we made two major changes.

First, the algorithm was removed from the time step subroutine and made into its

own subroutine.  This change was made primarily for ease of coding; now, instead of

having several hundred lines of wetting and drying code in the middle of the time step

subroutine, the code exists as its own unit.  If the wetting and drying algorithm is ever

modified or re-designed, then it will be easier to simply swap in the new algorithm as its

own subroutine.  As part of its transition to a separate subroutine, the algorithm was

modified to comply with the three-dimensional aspects of the model.  Specifically, the

computation of the bottom stress at newly wet nodes was changed, so that either the two-

dimensional (x-y) stress or the three-dimensional stress can be computed [16].

Second, the subroutine that solves the three-dimensional momentum equation was

modified to allow for wet and dry regions.  As noted earlier, dry regions are not

technically dry; the water depth at a dry node can be larger than zero, so long as it is less
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than the user-specified Hmin.  Thus, a thin film of water can exist at dry nodes.  This water

should not contribute to the momentum computations at a neighboring wet node.  If a wet

node is connected to a dry node, then the contribution from the dry node is not included in

the summation.  This issue was addressed in the two-dimensional implementation of the

algorithm, and the three-dimensional implementation follows that same logic.

5.1.2.  Updates to the Wetting and Drying Algorithm

In the summer of 2004, two changes were made to the wetting and drying

algorithm.  First, the two parameters NODEDRYMIN and NODEWETMIN were

eliminated.  Second, an elemental drying check was added.  These changes were discussed

in Section 4.1.2, but we will review them here for completeness.

The first change relates to the propagation of waves on relatively flat flood plains.

The user specified the two parameters NODEDRYMIN and NODEWETMIN in the input

file, and they were used to control how long a node had to remain either dry or wet.  Thus,

if NODEDRYMIN was set to 20, then any node had to remain dry for at least 20 time steps.

These parameters were included originally to control oscillations at the wetting front, but

it was discovered that they also slowed the propagation of flood waves.  To prevent this,

the two parameters were removed from the algorithm.

The second change relates to the flow of water down a steep incline.  It was

discovered that the simple momentum balance used in the node-based wetting check

allowed “barely wet” nodes to remain active in areas with steep topography.  Thus, a thin

film of water would be allowed to remain wet if it was on an incline where water was

flowing from above.  Mass balance problems occurred in these regions.  To prevent this, a
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new parameter, HOFF, was hardwired into the code, and it is set to 120 percent of the Hmin

parameter.  If any of the nodes on an element has a water depth that is less than HOFF, then

the element itself is dried.  This change allows water to build up on an incline before it is

allowed to flow downhill.

The effects of these changes were examined with the two-dimensional (x-z) model

in Chapter 4, and it was shown that they improve stability and mass balance, often

dramatically.  We will examine their effects for some limited test cases in this section; the

model problems were designed to mirror the two-dimensional model problems on which

we tested extensively previous versions.  However, unless stated differently, we will use

the improved version of the wetting and drying algorithm.

5.1.3.  Model Problems

The first model problem is the Linear Sloping Beach domain, shown in Figure 5.1.

It is similar to the Linear Sloping Beach domains used in the previous sections, except

now we have extended it in the y-direction for 12 kilometers.  This problem has the

following parameters (unless stated otherwise): a linear slope of 0.03 percent, an

undisturbed length of 18 kilometers, a bathymetric depth at the open ocean boundary of 6

meters, a grid spacing of 500 meters, a time step of 1 second, a forcing amplitude of 1.0

meter, a tidal period of 12 hours (43,200 sec), a duration of 4 tidal periods, a linear slip

coefficient of 0.0001 and a G value of 0.01 sec-1, an Hmin value of 0.01 meters, and a Umin

value of 0.01 meters per second.  Note the increase in the horizontal resolution; we will

show in Section 5.2.1.4 that the three-dimensional ADCIRC model is unstable at a grid
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spacing of 250 meters, which was used in the studies of the one- and two-dimensional

models.

The second model problem was designed explicitly to test the updates in the

wetting and drying algorithm.  It is similar to the Plateau domain from the study of the

two-dimensional (x-z) model, except it has been extended in the y-direction for a distance

of 12 kilometers.  A schematic of this domain is shown in Figure 5.2.  There are three

major differences from the Plateau domain in Chapter 4.  First, the grid spacing has been

increased from 250 meters to 500 meters, for stability reasons.  Second, the flat region of

the domain has been tripled in length, from 6 kilometers to 18 kilometers, to create a more

robust study of the wetting and drying of floodplains.  Third, the slope at the left and right

edges of the domain has been doubled, to create a more robust study of drainage down a
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Figure 5.1.  Three-dimensional view of the Linear Sloping Beach domain.
Note that the bathymetry ranges from a depth of 6 meters at the ocean
boundary to 2 meters above sea level at the land boundary.
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steep incline.  Taken together, these changes make simulations on the three-dimensional

Plateau domain even more difficult than those in the previous chapter, and it should be a

challenging test of the three-dimensional wetting and drying algorithm.  This problem has

the following parameters (unless stated otherwise): an total length of 30 kilometers, an

undisturbed water length of 10 kilometers, a bathymetric depth at the open ocean

boundary of 10 meters, a grid spacing of 500 meters, a time step of 1 second, a forcing

amplitude of 1.0 meter, a tidal period of 12 hours (43,200 sec), a duration of 4 tidal

periods, a linear slip coefficient of 0.0001 and a G value of 0.01 sec-1, an Hmin value of

0.01 meters, and a Umin value of 0.01 meters per second.
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Figure 5.2.  Three-dimensional view of the Plateau domain.  Note that the
flat range has a bathymetry of 0.5 meters above sea level, and it extends
from 10.5 kilometers to 28.5 kilometers in the x-direction.
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5.1.4.  Error Computations

In this chapter, we use the same error measures as for the previous wetting and

drying studies.  For the Linear Sloping Beach domain, we can compare our numerical

results and the analytical solution described in Section 3.2.1.1.  The domain is sliced at

 meters to obtain results that can be compared with the one-dimensional

analytical solution.  Then we examine the position of the wet/dry interface over the fourth

tidal period (because the model is spun up from a cold start for the first three periods).

After every 10-minute interval in that fourth period, we calculate the difference between

the position of the interface given by the numerical results and the position of the interface

given by the analytical solution.  These differences are then averaged.  If the numerical

results successfully approximate the analytical solution, then the average difference

should be zero.  However, spatial discretization often prevents a perfect match between

numerical and analytical, so we are satisfied if the average difference is less than the grid

spacing of 250 meters.  Also, it is important to remember that the analytical solution does

not include bottom friction, so optimal ADCIRC results will occur at relatively low values

of that parameter.

The second error measure is an examination of mass balance.  Again, we use a

procedure similar to that from the one-dimensional wetting and drying study.  We utilize a

cumulative mass balance error over the entire simulation, and it is calculated using a finite

volume approach.  However, instead of using a depth-averaged flux and computing the

mass balance error at each horizontal element, we now compute mass balance error at all

elements.  We begin with the three-dimensional continuity equation:

y 6000=
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, (5.1)

where  is the three-dimensional velocity.  If we integrate this equation over some region

 (here taken to be an individual element), we get:

. (5.2)

We can then apply the divergence theorem on an individual element to get:

, (5.3)

where  is the unit normal vector on each face of the element.  When we compute the

fluxes on an element, we first compute an average velocity on each face as an arithmetic

average of the velocities at the three (or four) nodes that define the face.  Then, to get the

flux, we take the dot product of that average velocity and the unit normal vector.  Thus, the

local mass balance error for any element is simply the residual when that element’s fluxes

are summed.  The global mass balance error is a sum of those residuals.  To allow for a

comparison with previous studies, we divided the global mass balance error by the width

of the domain to obtain an error per unit width.

As we will show, this new method of computing mass balance errors prevents

them from being truly comparable to the errors reported in the one-dimensional and two-

dimensional (x-z) studies.  When the three-dimensional ADCIRC model solves for vertical

velocities, it uses the same equation that we are using to solve for fluxes for mass balance.

∇ v⋅ 0=

v

Ω

∇ v⋅( ) Ωd
Ω
 0=

v n⋅( ) ∂Ω( )Ad
Ω∂
 0=

n
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In effect, the vertical velocities are computed in a way that minimizes mass balance error.

Because of the continuous finite element approximation, the vertical velocity solver

couples the entire water column, so, while the “global” mass balance errors are minimized

for the column, the local mass balance error at any element in the column may be non-

zero.  We will show that this method of computing mass balance produces much smaller

errors, because it is more closely tied to the way the model solves for vertical velocities.

Recently, several papers [1, 8] have advocated computing mass balance from finite

element residuals in order to be consistent with the numerical discretization.  However, we

have shown (Kolar et al. [13]) the finite volume approach to be a good surrogate variable

for accuracy and phasing errors; that is, small mass balance errors (as computed with finite

volume) correlate with small constituent errors.  Additionally, in Chapter 2, we showed

that the finite volume method is a good indicator of truncation errors, especially for

domains that have a constant node spacing.  Hence our reason for using the finite volume

approach herein.

5.2.  Numerical Experiments

This subsection contains the results of numerical experiments conducted using the

Linear Sloping Beach domain and the Plateau domain.

5.2.1.  Linear Sloping Beach Domain

This subsection contains the results of five numerical experiments: heuristic

stability, parameter sensitivity with G and Kslip, parameter sensitivity with Hmin and Umin,

horizontal resolution, and vertical resolution.
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5.2.1.1.  Heuristic Stability

Although most of our three-dimensional studies will use only the improved

version of the wetting and drying algorithm, we did examine the effect of both versions on

heuristic stability.  To examine this stability, we increased the time step (in increments of 5

seconds) until the model became unstable.  The results for the two versions of the wetting

and drying algorithm are shown in Table 5.1.  Note that there is not a significant difference

between the two versions of the algorithm.  Both show maximum stable time steps of 45

seconds, which is higher than the time steps from the two-dimensional study, presumably

because the grid spacing is larger for the three-dimensional simulations.  Because of this

increased time step and increased grid size, the two versions show greater accuracy errors

than was seen in Chapter 4.  (Note that, for both versions, the average difference of the

shoreline from the analytical solution is well below the grid spacing of 500 meters.)

Table 5.1: Summary of heuristic stability results for the two versions of the
wetting and drying algorithm.  The two versions do not show significant
differences for the Linear Sloping Beach domain.  Note that mass balance
error is an average error over all four tidal cycles, while the difference
between the shoreline from the numerical results and the shoreline from
the analytical solution is an average over only the fourth tidal cycle.

Original
Algorithm

Improved
Algorithm

Maximum stable time step 45 sec 45 sec

Mass balance error 6.073 m2 6.099 m2

Average difference from 
analytical solution

267.247 m 287.138 m
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However, note the magnitude of the mass balance errors, which have been divided by the

width of the domain to allow for comparison with the results from the studies on the one-

and two-dimensional (x-z) versions of the algorithm.  As noted in Section 5.1.4, mass

balance error is computed in three dimensions as a simple flux balance on each element;

the local and global accumulations are not computed.

The two versions of the wetting and drying algorithm do not show significant

differences, because the Linear Sloping Beach domain was not designed to test the

updates in the improved version.  Thus, because these initial results do not contradict the

results from the study of the two-dimensional (x-z) model in Chapter 4, we will use only

the improved version of the wetting and drying algorithm for the rest of the studies that

use the Linear Sloping Beach domain.

5.2.1.2.  Parameter Sensitivity - Kslip and G

As discussed in Section 3.2.1.3, two important parameters in the ADCIRC model

are the bottom friction and the numerical parameter G (sometimes called ).  In three

dimensions, bottom friction is implemented as a term in the vertical stress calculation:

, (5.4)

and:

, (5.5)

where  and  are the bottom stresses in the x- and y-directions, respectively;  is

the reference density of the fluid; u and v are the velocities in the x- and y-directions; j is

τ0

τbx j,
ρ0

---------- Kslip j, uj=

τby j,
ρ0

---------- Kslip j, vj=

τbx τby ρ0
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the node index; and Kslip is the bottom boundary condition.  For a “no slip” bottom

boundary condition:

. (5.6)

For a “linear slip” bottom boundary condition:

. (5.7)

And, for a “quadratic slip” bottom boundary condition:

, (5.8)

where Cd is a quadratic drag coefficient.  The results shown in this section utilize a linear

slip bottom boundary condition, where Kslip is a user-specified constant.  We varied both

Kslip and G from 10-5 to 100 (sec-1 for G, unitless for Kslip), creating a test matrix of 36

combinations of Kslip and G.  Then we examined the effect of each combination on the

model’s accuracy and mass balance properties.

Figure 5.3 shows the average distance between the shoreline as computed by

ADCIRC and the shoreline from the analytical solution, over the fourth tidal cycle and for

36 combinations of Kslip and G.  Note that this figure is similar to Figure 3.7, for the one-

dimensional ADCIRC model, and Figure 4.2 and Figure 4.3, for the two-dimensional (x-z)

ADCIRC model.  The model is unstable for a similar set of combinations, when Kslip and

G are both small.  At high values of G, the model is much more sensitive to Kslip; a slice at

 sec-1 is similar to a slice at  sec-1.  Most importantly, the same set of

combinations produces the best match between the numerical results and the analytical

solution.  The region around the combination of  and  sec-1 shows

errors that are within the grid spacing of 500 meters.  In fact, the minimum error occurs at

that combination and is about 242 meters, or less than half the grid spacing.  The behavior

Kslip j, ∞→

Kslip j, constant=

Kslip j, Cd uj
2

vj
2

+=

G 0.01= G 1.0=

Kslip 10
4–

= G 10
2–

=
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Figure 5.3.  The average difference between the numerical results and the
analytical solution over the fourth tidal cycle, as discussed in Section 5.1.4,
for 36 combinations of Kslip and G.  The errors are shown in intervals of
500 meters, which is the grid spacing.

0.000010.00010.0010.010.11

0.00001

0.0001

0.001

0.01

0.1

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Distance from 
Analytical 
Solution

K slip

G

164



of the shoreline for that combination of Kslip and G is shown in Figure 5.4, where the

numerical results match closely with the analytical solution, especially after the simulation

is ramped for one tidal cycle.  Thus, the wetting and drying algorithm captures accurately

the physics of the problem as implemented in the three-dimensional ADCIRC model.

Figure 5.5 shows the mass balance errors per unit width of the domain for 36

combinations of Kslip and G.  This figure is similar to Figure 3.9 from the study of the one-

dimensional wetting and drying algorithm and Figure 4.4 and Figure 4.5 for the two-

dimensional (x-z) wetting and drying algorithm.  The minimum mass balance errors occur

when both parameters are relatively large, presumably because less wetting and drying

occurs at those values.  Note how much smaller these mass balance errors are, compared

to the errors in Figure 3.9.  The “optimal” combination of  and 

sec-1 shows a mass balance error of about 0.067 square meters per unit width of the
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Figure 5.4.  The position of the shoreline along a slice at y = 6000 meters,
as given by the numerical results (black dots) and the analytical solution
(solid line) for the first four tidal periods.
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domain, or about 10-4 percent of the undisturbed water area.  This value is about six orders

of magnitude smaller than the corresponding mass balance error from the study of the one-

dimensional algorithm.  As we discussed in Section 5.1.4, the different method by which

we compute finite volume mass balance errors in three dimensions produces much smaller

mass balance errors for the same problem.

5.2.1.3.  Parameter Sensitivity - Hmin and Umin

Figure 5.6 shows the average distance between the shoreline computed by

ADCIRC and the shoreline predicted by the analytical solution, along a slice of the

domain at y = 6000 meters.  This figure is very similar to Figure 3.10 from the one-

Figure 5.5.  Mass balance errors for 36 combinations of Kslip and G.  The
errors are shown in intervals of 1 square meter per unit width of the
domain; see Section 5.1.4 for details.  The errors in the region at the front
of the graph are on the order of 0.01 to 0.03 square meters.
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dimensional study and Figure 4.6 and Figure 4.7 from the two-dimensional (x-z) study.  At

relatively large values of Hmin, the tide is not allowed to wet as far up on the beach, so the

shoreline does not inundate as far as the analytical solution predicts.  However, when the

value of Hmin is appropriately small, then ADCIRC is able to predict the position of the

shoreline within one grid spacing.  Note that, unlike the one-dimensional and two-

dimensional (x-z) versions of ADCIRC, the three-dimensional version is unstable at very

small values of Hmin.

Figure 5.7 shows the mass balance errors per unit width of the domain, for 28

combinations of Hmin and Umin.  Note that the model is unstable for values of Hmin smaller

than 10-3 meters.  Unlike the one-dimensional sensitivity study in Section 3.2.1.4, this

Figure 5.6.  The average difference between the numerical results and the
analytical solution in their calculation of the position of the shoreline over
the fourth tidal cycle, along a slice at y = 6000 meters.  The error is shown
in intervals of 500 meters, which is the grid spacing.  Note that the model is
unstable when Hmin < 10-3 meters.
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study shows a clear local minimum in mass balance errors at Hmin = 0.001 meters.  Thus,

to obtain the optimal combination of accuracy and mass balance, Hmin should be set to

0.001 meters.

Note that, for both the accuracy and mass balance studies, the parameter Umin does

not affect the behavior of ADCIRC.  This result is consistent with the one-dimensional

study in Chapter 3 and the two-dimensional (x-z) study in Chapter 4.  We have seen no

evidence in any sensitivity studies that the value of Umin matters.

5.2.1.4.  Horizontal Resolution

As we did for the one-dimensional model in Section 3.2.1.5 and the two-

dimensional (x-z) model in Section 4.2.1.4, we examine here the effects of horizontal

resolution on the Linear Sloping Beach domain.  Note that the grid spacing was refined in

Figure 5.7.  The mass balance errors for a range of Hmin and Umin values.
(See Section 5.1.4.)  The errors are shown in intervals of 0.2 square meters.
Note that the model is unstable for Hmin < 10-3 meters.
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both the x- and y-directions at the same time; thus, a grid spacing of 1000 meters would

create triangular elements that have two 1000-meter long faces that meet at a right angle.

The maximum grid spacing was 2000 meters (which creates a grid with 13 nodes in the x-

direction and 7 nodes in the y-direction); and the minimum grid spacing was 400 meters

(which corresponds to a 61-by-31 node grid).  Note that the model was unstable (at a time

step of 1 second) for grid spacings less than 400 meters.

Figure 5.8 shows the average distance between the simulated shoreline and the

analytical shoreline during the fourth tidal cycle, for this range of horizontal resolutions.

The thin black line is included as a reference; it shows that the model was always able to

simulate the shoreline within one grid spacing.  In fact, for every resolution, the average

distance between the simulated shoreline and the analytical shoreline was about half a grid

Figure 5.8.  The average distance over the fourth tidal cycle between the
simulated shoreline and the analytical shoreline, for a range of horizontal
resolutions.  In all cases, the three-dimensional ADCIRC model is able to
simulate the shoreline within half a grid spacing.
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spacing.  This result indicates that, although accuracy is lost when the grid spacing is

increased, the model continues to be as accurate as can be expected.  And, as the grid

spacing is decreased, the error converges toward zero at a rate of 0.49.

Figure 5.9 shows the mass balance errors over all four tidal cycles, for the range of

horizontal resolutions.  Again, note how the errors converge toward zero as the horizontal

resolution is refined; the convergence rate is 1.03.  Although this behavior was observed

using the one-dimensional model (Figure 3.12), it is a contrast to the relatively flat

behavior exhibited by the two-dimensional (x-z) model (Figure 4.11).  We believe this

behavior is due to the better method of computing mass balance in three dimensions; here,

we are conducting a flux check on each element in the vertical direction, and thus the mass

balance errors are more representative of system behavior.
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Figure 5.9.  Mass balance errors over the first four tidal cycles for a range
of horizontal resolutions, for the Linear Sloping Beach domain.  Note that
the model was unstable (at  second) for grid spacings less than 400
meters.
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5.2.1.5.  Vertical Resolution

Again, as in the study of the two-dimensional (x-z) ADCIRC model in Section

4.2.1.5 and Section 4.2.2.5, we examined the effects of increased vertical resolution on the

three-dimensional model.  The number of vertical layers was increased from 6 layers to

101 layers until the model became unstable, at a time step of 1 second.  Figure 5.10 shows

the average distance over the fourth tidal cycle between the simulated shoreline and the

analytical solution, for a range of vertical resolutions.  Most vertical resolutions show the

same accuracy error of about 242 meters, which is less than half the grid spacing of 500

meters.  And, like the results from the two-dimensional (x-z) model in Section 4.2.1.5, the

accuracy errors are insensitive to the vertical resolution.

Figure 5.10.  The average distance between the simulated shoreline and the
analytical solution for a range of vertical resolutions, for the Linear Sloping
Beach.  Note that most resolutions show an error of about 242 meters,
which is less than half the grid spacing of 500 meters.
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Figure 5.11 shows the mass balance errors per unit width for the same range of

vertical resolutions.  Again, note the relative insensitivity of the errors to vertical

resolution; except for the highest possible resolution of 101 vertical layers, the mass

balance errors range from 0.06 m2 to 0.075 m2 and do not converge as the vertical

resolution is refined.  As we noted in the previous chapter, although the Linear Sloping

Beach domain is a good test case for wetting and drying, it does not produce much

variation in the vertical direction, and vertical mixing is nearly nonexistent.  Thus, it is

unreasonable to expect the model to perform better with increased vertical resolution,

because it is can simulate the existing behavior with only a few vertical layers.  In that

sense, the results in this section make sense and may be optimal.  Users of the three-

Figure 5.11.  Mass balance errors per unit width for a range of vertical
resolutions, for the Linear Sloping Beach domain.  Note that increased
resolution does not improve the mass balance properties.
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dimensional ADCIRC model should understand the physics of their problem and select a

vertical resolution that is appropriate.

5.2.2.  Plateau Domain

As discussed above in Section 5.1.3, the Plateau domain was designed to test the

behavior of the improved wetting and drying algorithm.  The domain features a flat region

to simulate wave run-up on a flood plain, and it also features a steeper slope to simulate

thin films of water draining downhill.  This subsection contains the results of five

numerical experiments: heuristic stability, parameter sensitivity with G and Kslip,

parameter sensitivity with Hmin and Umin, horizontal resolution, and vertical resolution.

5.2.2.1.  Heuristic Stability

For the Plateau domain, we determined the maximum stable time step by gradually

increasing the time step in increments of 5 seconds until the model became unstable.  We

performed this test for both the original and improved versions of the wetting and drying

algorithm, in order to examine their behavior in a three-dimensional setting.  The results

of these tests are summarized in Table 5.2.  In contrast to the Linear Sloping Beach

domain, the Plateau domain does produce different (and better) results when the improved

wetting and drying algorithm is used.  The time step is increased from 35 seconds to 45

seconds (or by 28 percent), and the mass balance error is roughly the same.  Note the

increase in the magnitude of the mass balance error; it is about 20 times larger than the

mass balance errors from the Linear Sloping Beach shown in Table 5.1.  This increase is
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an indicator of the Plateau domain’s inherent difficulties, the effects of which will be seen

in the following numerical experiments.

5.2.2.2.  Parameter Sensitivity - Kslip and G

Here, we examine the effects of the numerical parameter G and the roughness

parameter Kslip in a model problem.  This time, it is the Plateau domain.  Figure 5.12

shows the mass balance errors per unit width of the domain, for a range of 36

combinations of these parameters.  The added difficulties of the Plateau domain are

evident when you compare these errors with the errors from the Linear Sloping Beach

domain shown in Figure 5.5.  Note that the model is unstable in this domain when either

 or when .  Also note that, except for the region in the front

of Figure 5.12 where both parameters are large, the mass balance errors are noticeably

worse in the Plateau domain.  We believe this behavior is due to the flood surge in the flat

region and the thin film of draining water at the edge of the plateau, both of which are

problem areas that were included explicitly in the design of this domain.  These parameter

sensitivity results indicate that ADCIRC can obtain acceptable mass balance properties

Table 5.2: Summary of heuristic stability results for the two versions of the
wetting and drying algorithm.  Note that mass balance error is an average
error over all four tidal cycles.

Original
Algorithm

Improved
Algorithm

Maximum stable time step 35 sec 45 sec

Mass balance error, with a 
maximum stable time step

102.519 m2 108.794 m2

Kslip 0.00001= G 0.0001≤
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even in adverse conditions, provided users select an appropriate combination of run-time

parameters.

5.2.2.3.  Parameter Sensitivity - Hmin and Umin

The drying parameter Hmin and the wetting parameter Umin were each varied from

0.00001 to 1.0 (meters for Hmin; m/sec for Umin). Figure 5.13 shows the mass balance

errors per unit width of the domain, for the range of Hmin-Umin combinations.  Note that

the model is unstable in the Plateau domain when  meters.  Also note that,

for the first time in this thesis, we have some significant differences in the error measure

when Umin is varied.  Specifically, along the slice in the figure when  meters,

the mass balance errors range from 4.3 m2 to 5.1 m2, and then the model becomes unstable

Figure 5.12.  Mass balance errors per unit width of the Plateau domain, for
a range of G-Kslip combinations.  The model is unstable in this domain for
combinations when  and/or when  .Kslip 0.00001= G 0.0001≤
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for combinations when  m/sec.  The qualitative behavior of these results is

similar to the behavior of the mass balance errors for the Linear Sloping Beach domain

shown in Figure 5.7; the optimal mass balance errors occur at the extremes of the stable

region, and they are larger in the center.  However, for the Plateau domain, some of the

mid-range values for Hmin also cause the model to be unstable, depending on the value of

Umin.

5.2.2.4.  Horizontal Resolution

To examine the effects of horizontal resolution on the three-dimensional wetting

and drying algorithm, the grid spacing was varied from 100 meters to 2000 meters, and the

mass balance errors per unit width of the domain were again examined.  Figure 5.14

Figure 5.13.  Mass balance errors per unit width of the Plateau domain, for
a range of Hmin-Umin combinations.  Note that the model is unstable in the
Plateau domain when  meters.Hmin 0.001<
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shows the results of this study.  Note that the model was unstable in this domain for grid

spacings less than 500 meters, at a time step of 1 second.  The qualitative behavior of the

errors is good, because the errors converge as the grid spacing is refined.  Note that, when

the grid spacing is divided by four (from 2000 meters to 500 meters), the corresponding

errors decrease by a factor of 2.4, which indicates sublinear convergence.  Also, at the

larger grid spacings, the mass balance errors oscillate.   Each data point represents a

slightly different domain; for example, it is possible to begin the flat region of the domain

at  kilometers if the grid spacing is 1500 meters, but the flat region must begin at

 kilometers if the grid spacing is 2000 meters.  Similar differences are observed in

the ability of each domain to pinpoint the location of the wetting front.  These differences

in the domains cause the simulations themselves to be different, but this is a phenomenon

that is mirrored with more realistic domains; as more node points are added, the
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Figure 5.14.  Mass balance errors per unit width of the Plateau domain, for
a range of horizontal resolutions.  Note that the model was unstable in this
domain for grid spacings smaller than 500 meters.
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underlying bathymetry is represented better.  Thus, the oscillations and sublinear

convergence are most likely a consequence of the subtle differences between the domains.

Overall, we believe the observed behavior is physically realistic.

5.2.2.5.  Vertical Resolution

The effect of vertical resolution was examined by varying the number of vertical

layers from six to 201.  Figure 5.15 shows the mass balance errors per unit width of the

domain for a range of vertical resolutions.  Note that the model was unstable at vertical

resolutions with six layers and with 126 or more vertical layers.  However, the results

shown in the figure indicate that simulations on the three-dimensional Plateau domain

produce errors that are insensitive to vertical resolution.  This finding is similar to

Figure 5.15.  Mass balance errors per unit width of the domain for a range
of vertical resolutions.
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previous studies in three dimensions (Section 5.2.1.5) and in two dimensions (Section

4.2.1.5 and Section 4.2.2.5).  Like those earlier domains, the three-dimensional Plateau

domain does not experience enough vertical mixing for it to be sensitive to vertical

resolution.  Future studies should include a wetting and drying problem where vertical

mixing is guaranteed.

5.3.  Conclusions and Future Work

The wetting and drying algorithm has been successfully implemented in the three-

dimensional ADCIRC model.  Furthermore, the algorithm produces results that are

qualitatively similar to the results in Chapter 3 from the one-dimensional model and

Chapter 4 from the two-dimensional (x-z) model.  The Linear Sloping Beach domain

continues to behave best at the combination of Kslip = 0.0001 and G = 0.01 sec-1.  The

Hmin parameter produces the best behavior when it is set to a relatively low value, such as

0.01 meters or 0.001 meters; however, for the first time, the model is unstable if Hmin is set

too low.  The Umin parameter does not affect the performance of any of the models.  And

all versions of the ADCIRC model are sensitive to horizontal resolution.  These results are

encouraging, and they suggest that a set of optimal parameters for the wetting and drying

algorithm can be recommended.  We will do that as part of the formal conclusions in

Chapter 6.
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6.  Conclusions

In this thesis, we have accomplished six objectives: (1) refuted an attack on the

usefulness of the finite volume method for computing mass balance errors, (2) laid the

groundwork for a future study that will automate the placement of grid points based on a

minimization of local mass balance error, (3) implemented and assessed the wetting and

drying algorithm in one-, two-, and three-dimensional versions of the ADCIRC model, (4)

identified a set of optimal parameters for wetting and drying simulations, (5) proved that

recent updates to the wetting and drying algorithm were beneficial, and (6) shown that

smaller mass balance errors are obtained when they are computed for each vertical

element in the water column.

First, in Chapter 2, we successfully refuted an attack on the usefulness of the finite

volume method for computing mass balance errors.  The finite volume method has been

used traditionally to compute mass balance errors.  However, recent papers have

suggested that the finite element method produces fluxes that are more consistent with the

model’s formulation, and thus better for use in the computation of mass balance [1, 8].  We

have shown that the finite element method produces mass balance errors that are trivial,

even for model domains that have exhibited poor mass balance properties in the past.

Furthermore, we have shown that the finite volume method produces mass balance errors

that correlate well with truncation errors, especially for grids with constant node spacing.

Thus, these finite volume mass balance errors can be useful as an assessment tool, because
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they indicate where the truncation errors are significant.  Because of this result, we used

finite volume mass balance errors as an assessment tool in the rest of this thesis.

Second, also in Chapter 2, we laid the groundwork for a future study that will

automate the placement of grid points based on a minimization of local mass balance

error.  In Section 2.7, we started with a grid that has constant node spacing and used it to

develop a grid that minimized both mass balance errors and truncation errors.  Our process

was “crude,” in that we moved nodes by hand from areas with small local mass balance

errors to areas with large local mass balance errors.  However, we have shown that even

this simple process can produce a grid that compares favorably to more sophisticated

grids.  A future study will take this study one step farther and attempt to automate the

placement of grid points based on local mass balance error.  This automated method will

be less costly than current grid generation methods that attempt to place nodes based on

local truncation errors, and it will produce grids that show good mass balance properties

and good truncation errors.

Third, in Chapter 5, we implemented the wetting and drying algorithm in a three-

dimensional version of the ADCIRC model.  Three-dimensional simulations have become

increasingly practical as computer architectures become faster and more efficient.  And, in

many applications of the model, the vertical profile and mixing in near-shore regions are

most important.  We have shown that the three-dimensional algorithm can be used to

simulate problems with challenging bathymetries.  We have also shown that the three-

dimensional algorithm behaves in a manner that is qualitatively similar to the behavior of

the one- and two-dimensional algorithms in Chapter 3 and Chapter 4, respectively.
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Fourth, in all three of the wetting and drying chapters, we identified a set of

optimal parameters for wetting and drying simulations.  We will discuss this behavior in

detail:

• The maximum stable time step ranged from 10 seconds to 55 seconds, but, for both

of the model problems from the study of the three-dimensional algorithm in

Chapter 5, the maximum stable time step was 45 seconds.  If wave celerity is

assumed to be based on  meters, then the Courant number for that

time step is about 0.00063.  For wetting and drying applications, we recommend

that ADCIRC users first try a time step that produces a similar Courant number,

and then adjust it accordingly.

• The numerical parameter G and the slip coefficient Kslip produce the best behavior

when G = 0.01 sec-1 and Kslip = 0.0001.  Smaller values of G tend to cause the

model to become unstable, regardless of the domain.  And, larger values of Kslip

tend to limit or prevent wetting and drying.  We recommend that ADCIRC users

begin with these values and adjust them to suit their problems.

• The drying parameter Hmin produces the best behavior when it is in the range from

0.001 to 0.01 meters.  Larger values tend to limit or prevent drying, and smaller

values tend to cause the three-dimensional model to become unstable.

• The wetting parameter Umin does not affect the performance of the wetting and

drying algorithm.  It can be set to the same value as Hmin and then forgotten.  We

recommend that it be hard-wired or removed eventually.

• The horizontal node spacing affects the ability of the model to track the shoreline

or other wave fronts.  The errors tend to converge when the horizontal resolution is

Hmin 0.01=
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refined, but that is not always the case.  As always with horizontal resolution, the

model user should be careful to strike a balance between representation of the

physical features and model efficiency.

• The vertical node spacing does not affect the behavior of the model in simulations

that do not contain vertical mixing.  Future work is needed to identify simulations

when vertical resolution is important.

These are merely recommendations.  ADCIRC users should tailor their input parameters

to represent their problems of interest.

Fifth, in Chapter 4 and Chapter 5, we proved that recent updates to the wetting and

drying algorithm were beneficial.  The original algorithm proved to be unstable for a wide

range of parameters and problems, including cases that worked well in one dimension.

And, even when the original algorithm was stable, it required smaller time steps, it was

less accurate, and it produced greater mass balance errors.  The improved algorithm not

only behaved better, but its behavior was qualitatively similar to that of the one-

dimensional model.  Thus, the recent updates were beneficial.  This finding won’t impact

an improved wetting and drying algorithm that has already been implemented and adopted

in the production ADCIRC code, but it does help to explain the reasoning for its adoption.

Sixth, in Chapter 5, we showed that smaller mass balance errors are obtained when

they are computed for each vertical element in the water column.  As discussed in Section

5.1.4, the finite volume method of computing mass balance errors is consistent with the

three-dimensional continuity equation that is used to compute the vertical velocities.  In

effect, the vertical velocities are computed in a way that satisfies primitive continuity, at

least for each vertical column of elements.  The errors at an individual element in that
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column may be non-zero, but they are significantly less than they would be if they were

computed for the entire column by using the average velocity, as is done in the studies of

the one- and two-dimensional models.  Thus, when possible, mass balance errors should

be computed for each element, because that method follows the way in which the model is

formulated and produces a metric that seems to mimic truncation errors in three

dimensions.

Taken together, these six objectives represent an important and unique contribution

to the field of hydrodynamic modeling in general and to the group of ADCIRC users and

developers in particular.
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A. Appendix

As stated previously, ADCIRC is based on two governing equations: the

generalized wave continuity (GWC) equation, and either the nonconservative momentum

(NCM) equation or the conservative momentum (CM) equation.  We will present each

equation and its respective truncation error terms in that order.

A.1.  Truncation Error Terms for the GWC Equation

In one dimension, the generalized wave continuity equation is given by:

, (A.1)

where the variables are defined below.  The truncation error terms will be presented for

each term in the governing equation shown in Equation A.1, beginning with the first term,

, which is given by:
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where: x is distance and it is indexed with j;  is the grid spacing at element j; t is time

and it is indexed with k;  is the time step; and  is the water surface elevation from the

mean.  The second term, , is given by:

(A.3)

,

where G is the numerical parameter introduced by Kinnmark [11].  The third term,

 is the spatially-varied G term, which was not used in any of our studies.  The

fourth term is:

, (A.4)

which is the advective term, and it can be formulated conservatively or non-

conservatively.  The conservative form of the advective term is , and its

truncation error is given by:

, (A.5)
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where qu is the product of the flux, q, and the velocity, u.  The non-conservative form of

the advective term has two parts.  The first part of the non-conservative form of the

advective term is , and its truncation error is given by:

(A.6)
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.

The second part of the non-conservative form of the advective term is ,

and its truncation error is given by:

(A.7)
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.

The fifth term, , is a combination of the GWC flux term and the bottom

friction flux term, and its truncation error is given by:

(A.8)

,

where  is bottom friction.  The sixth term is:

, (A.9)

which is the finite amplitude term.  It is broken into two parts.  The first part of the finite

amplitude term is , and its truncation error is given by:
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,

where h is the bathymetry, and g is the acceleration due to gravity.  The second part of the

finite amplitude term is , and its truncation error is given by:

, (A.11)
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where  is the square of the water surface elevation from the mean.  Finally, the seventh

term in Equation A.1 is:

, (A.12)

which is the viscous term.  In ADCIRC, this term is formulated as , and its

truncation error term is given by:

(A.13)

,

where  is eddy viscosity.

A.2.  Truncation Error Terms for the NCM Equation

In one dimension, the non-conservative momentum equation is given by:

. (A.14)

Again, the truncation error terms will be presented for each term in the governing

equation.  The first term in Equation A.14, , is the accumulation term, and it is

given by:
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(A.15)

.

The second term in Equation A.14, , is the advection term, and its truncation

error term is given by:

(A.16)

.

The third term in Equation A.14, , is the bottom friction term, and its truncation error

term is given by:

(A.17)
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.

The fourth term in Equation A.14, , is the finite amplitude term, and its

truncation error term is given by:

(A.18)

.

The fifth term in Equation A.14, , is the viscous term, and its truncation

error term is given by:

(A.19)
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.

A.3.  Truncation Error Terms for the CM Equation

In one dimension, the conservative momentum equation is given by:

. (A.20)

The truncation error terms will be presented for each term in the governing equation.  The

first term in Equation A.20, , is the accumulation term, and its truncation error term

is given by:

(A.21)
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.

The second term in Equation A.20, , is the advective term, and its truncation

error term is given by:

(A.22)

.

The third term in Equation A.20, , is the bottom friction term, and its truncation error

term is given by:

(A.23)

.
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The fourth term in Equation A.20 is:

, (A.24)

which is the finite amplitude term.  This term has two parts.  The first part of the finite

amplitude term is , and its truncation error term is given by:

(A.25)
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.

The second part of the finite amplitude term is , and its truncation error

term is given by:

(A.26)

.

The fifth term in Equation A.20, , is the viscous term, and its truncation error

term is given by:

(A.27)
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