Validation of the Unstructured, Highly-Scalable, Integrally-Coupled, ADCIRC-UnSWAN Model

J.C. Dietrich, J.J. Westerink University of Notre Dame M. Zijlema, L. Holthuijsen Delft University of Technology C. Dawson University of Texas R. Luettich, J. Fleming University of North Carolina

'Loose' Coupling

'Loose' Coupling:

- Models coupled through input files
 - Water levels and currents passed to wave model
 - Wave-driven forces passed to circulation model

ADCIRC Coupled to Wave Models:

- Basin/region scale: WAM, WaveWatch III
- Nearshore: STWAVE, SWAN

'Loose' Coupling

Example: Louisiana Storm Surge Modeling

'Loose' Coupling

Example: Louisiana Storm Surge Modeling

'Loose' Coupling

It Works!

• Maximum significant wave heights in Hurricane Katrina

13TH ADCIRC WORKSHOP – 20-21 APRIL 2009 – 5

'Loose' Coupling

It Works!

• Maximum wave-driven forces in Hurricane Katrina

'Loose' Coupling

It Works!

• Effect of waves on water levels in Hurricane Katrina

'Tight' Coupling

Advantages:

- ADCIRC and wave model run on the same mesh
 - No nesting of meshes
 - No overlapping of meshes
- ADCIRC and wave model run on the same processor
 - No interpolation
 - No global message passing
 - Information is passed through memory
- Optimization of code
 - No overhead for coupling modeling framework
 - Utilize shared memory on multi-core processors
- Optimization of physics
 - No need for directionality in waves model
 - Dynamic *h* and *p*-adaptivity

'Tight' Coupling

Introducing ... AdcSwan!

- ADCIRC coupled to Simulating WAves Near-shore (SWAN)
- SWAN:
 - Developed by Booij, Holthuijsen, Zijlema at Delft University
 - Non-phase-resolving, wave energy propagation model

Progress:

- SWAN converted to unstructured meshes (UnSWAN)
- UnSWAN implemented in parallel (PUnSWAN)
- ADCIRC and PUnSWAN compiled into PAdcSwan
 - Pass node-based information between models
 - Run on same local mesh
 - Leapfrog through time

ADCIRC-SWAN

Schematic of Coupling:

- ADCIRC is run for 600 seconds ($\Delta t = 1 \text{ sec}$)
- Water levels (ζ) and currents (u, v) are passed to Swan
- SWAN is run for 600 seconds ($\Delta t = 600 \text{ sec}$)
- Radiation stresses (S_{xx} , S_{xy} , S_{yy}) and wave-driven forces (F_x , F_y) are computed; forces are passed to ADCIRC
- Repeat

• SWAN and ADCIRC are always extrapolating in time

ADCIRC-SWAN

How to Compile and Run:

- 1. Compile 'padcirc'
 - PUnSWAN uses the parallel infrastructure of PADCIRC
 - The SIZES and MESSENGER object files must exist already
- 2. Compile PUnSWAN
 - Done inside the 'swan' subdirectory
 - Follow instructions in 'INSTALL.README'
 - Our makefile uses the compiler flags in the SWAN 'macros.inc'
- 3. Compile 'padcswan'
 - Done inside the 'work' directory
 - ADCIRC and UnSWAN will be compiled into the same executable:

make padcswan

ADCIRC-SWAN

How to Compile and Run:

- 4. Compile a SWAN-compatible version of 'adcprep'
 - Add a flag inside your 'cmplrflags.mk' file:

```
# Portland Group compiler on TU Ranger (AMD Opteron 8356, Barcelona Core) Seizo
ifeq ($(compiler),pgi-ranger)
 PPFC
               := pgf95
 FC
               := pgf95
 PFC
               := mpif90
 FFLAGS1
               := $(INCDIRS) -fast -tp barcelona-64 -Mextend
 FFLAGS2
               := $(FFLAGS1)
 FFLAGS3
               := $(FFLAGS1)
 DA
               := -DREAL8 -DLINUX -DCSCA
               := -DREAL8 -DLINUX BUSUA DCMPI
 DP
 DPRE
               := -DREAL8 -DLINUX -DADCSWAN
 IMODS
                   -I
 CC
               := gcc
 CCBE
               := $(CC)
 CFLAGS
               := $(INCDIRS) -DLINUX
 CLIBS
               :=
 LIBS
               :=
 MSGLIBS
               :=
 $ (warning (INFO) Corresponding machine found in cmplrflags.mk.)
 ifneg ($(FOUND),TRUE)
    FOUND := TRUE
 else
    MULTIPLE := TRUE
 endif
endif
```

- Prepares boundaries for use by SWAN
- Still compatible with non-coupled ADCIRC runs

ADCIRC-SWAN

How to Compile and Run:

- 5. Make two changes to the 'fort.15' file
 - Set NWS = +/- 3XX
 - Set RSTIMINC equal to the SWAN time step

1 ! NCOR - VARIABLE CORIOLIS IN SPACE OPTION PARAMETER 1 NTIP - TIDAL POTENTIAL OPTION PARAMETER -312 NWS - WIND STRESS AND BAROMETRIC PRESSURE OPTION PARAMETER 2 ! NRAMP - RAMP FUNCTION OPTION 9.81 ! G - ACCELERATION DUE TO GRAVITY - DETERMINES UNITS -3.0 ! TAU0 - WEIGHTING FACTOR IN GWCE 1.0 ! DT - TIME STEP (IN SECONDS) 0.00 ! STATIM - STARTING TIME (IN DAYS) 0.00 ! REFTIM - REFERENCE TIME (IN DAYS) 90 600 ! WTIMINC = TIME INTERVAL (IN SECONDS) BETWEEN WIND AND PRESSURE DATA IN UNIT 22 25.00 ! RNDAY - TOTAL LENGTH OF SIMULATION (IN DAYS) 12.0 0.5 2.0 ! DRAMP - DURATION OF RAMP FUNCTION (IN DAYS)

Now wave-driven forces are passed from SWAN to ADCIRC

ADCIRC-SWAN

How to Compile and Run:

6. SWAN is controlled by the new 'fort.26' file ...

	_
PROJ 'KatrinaWV' 'KWV']
έ.	
SET LEVEL 0.0	
SET DEPMIN 0.1	
MODE NONSTATIONARY	
\$	
COORDINATES SPHERICAL CCM	
\$	
CGRID UNSTRUCTURED CIRCLE MDC=32 FLOW=0.031384 MSC=32	
READ UNSTRUCTURED	
\$	3
INIT ZERO	
\$	
INPGRID WLEV UNSTRUCTURED EXCEPTION 0.1 NONSTAT 20070101.000000 600 SEC 20070108.00000	
READINP ADCWL	1
\$	
INPGRID CUR UNSTRUCTURED EXCEPTION 0. NONSTAT 20070101.000000 600 SEC 20070108.00000)
READINP ADCCUR	
\$	
INPGRID WIND UNSTRUCTURED EXCEPTION 0. NONSTAT 20070101.000000 600 SEC 20070108.00000)
READINP ADCWIND	
\$	
GEN3 KOMEN AGROW	÷
WCAP KOMEN 2.36E-5 3.02E-3 2.0 1.0 1.0	5
BREAKING	
FRICTION	
TRIADS	
PROP BSBT	
OFF REFRAC	
NUM STOPC DABS=0.005 DREL=0.01 CURVAT=0.005 NPNTS=101 NONSTAT MXITNS=2	
s de la constante de	
TEST 1,0	
COMPUTE 20070101.000000 600 SEC 20070108.000000	
ISTOP	

ADCIRC-SWAN

How to Compile and Run:

- 7. ... and by the new 'swaninit' file
 - The command file name is 'fort.26'

4	version of initialisation file			
Delft University of Technology	name of institute			
3	command file ref. number			
fort.26	command file name			
4	print file ref. number			
KatrinaWW.prt	print file name			
4	test file ref. number			
	test file name			
6	screen ref. number			
99	highest file ref. number			
\$	comment identifier			
	TAB character			
X	dir sep char in input file			
7	dir sep char replacing previous one			
1	default time coding option			

ADCIRC-SWAN

How to Compile and Run:

8. Run 'padcswan' like you would run 'padcirc'

• The command is something like:

mpirun -np 512 ./padcswan -W 10

• The run looks something like:

TIME STEP = 1555300	ITERATIONS = 13 TIME = 0.15553000E+07			
ELMAX = 0.2448E+00 AT	NODE 787 SPEEDMAX = 0.4780E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1555400	ITERATIONS = 12 TIME = 0.15554000E+07			
ELMAX = 0.2448E+00 AT	NODE 1365 SPEEDMAX = 0.4823E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1555500	ITERATIONS = 13 TIME = 0.15555000E+07			
ELMAX = 0.2448E+00 AT	NODE 1365 SPEEDMAX = 0.4882E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1555600	ITERATIONS = 12 TIME = 0.15556000E+07			
ELMAX = 0.2446E+00 AT	NODE 1365 SPEEDMAX = 0.4957E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1555700	ITERATIONS = 12 TIME = 0.15557000E+07			
ELMAX = 0.2444E+00 AT	NODE 1365 SPEEDMAX = 0.5036E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1555800	ITERATIONS = 13 TIME = 0.15558000E+07			
ELMAX = 0.2442E+00 AT	NODE 1365 SPEEDMAX = 0.5114E-01 AT NODE	780	ON MYPROC =	0
+time 20070101.001000	, step 1; iteration 1; sweep 1			
+time 20070101.001000	, step 1; iteration 1; sweep 2			
+time 20070101.001000	, step 1; iteration 2; sweep 1			
+time 20070101.001000	, step 1; iteration 2; sweep 2			
TIME STEP = 1555900	ITERATIONS = 12 TIME = 0.15559000E+07			
ELMAX = 0.2440E+00 AT	NODE 1365 SPEEDMAX = 0.5200E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1556000	ITERATIONS = 13 TIME = 0.15560000E+07			
ELMAX = 0.2439E+00 AT	NODE 4092 SPEEDMAX = 0.5292E-01 AT NODE	780	ON MYPROC =	0
TIME STEP = 1556100	ITERATIONS = 12 TIME = 0.15561000E+07			
ELMAX = 0.2440E+00 AT	NODE 4092 SPEEDMAX = 0.5389E-01 AT NODE	780	ON MYPROC =	0

ADCIRC-SWAN

How to Compile and Run:

- 9. New SWAN output files will be created
 - Tied to meteorological output:

-4 18.0 25.0 3600 ! NOUTGE, TOUTSGE, TOUTFGE, NSPOOLGE : GLOBAL ELEVATION OUTPUT INFO (UNIT 63) 4 18.0 25.0 3600 ! NOUTGV, TOUTSGV, TOUTFGV, NSPOOLGV : GLOBAL VELOCITY OUTPUT INFO (UNIT 64) -4 18.0 25.0 3600 D NOUTGW, TOUTSGW, TOUTFGW, NSPOOLGW : GLOBAL WIND OUTPUT INFO (UNIT 73/74)

- Many global output files will be generated:
 - Pressure: 'fort.73'
 - Wind speed: 'fort.74'
 - Wave-driven forces: 'rads.64'
 - Significant wave heights: 'swan_HS.63'
 - Mean wave directions: 'swan_DIR.63'
 - Mean wave periods: 'swan_TM02.63'
 - Peak wave periods: 'swan_TPS.63'

Hurricane Katrina

Wave Heights

Hurricane Katrina

Hurricane Katrina

Hurricane Katrina

Hurricane Katrina

Hurricane Katrina

Hurricane Katrina

Hurricane Katrina

Waves on Water Levels

Hurricane Katrina

 13^{TH} ADCIRC WORKSHOP – 20-21 APRIL 2009 – 38

Hurricane Katrina

Hurricane Katrina

Comparison to Measured Data

- NDBC buoy data
- USACE high-water marks
- FEMA/URS high-water marks

 13^{TH} ADCIRC WORKSHOP – 20-21 APRIL 2009 – 46

Hurricane Katrina

SIGNIFICANT WAVE HEIGHTS (HS) AT NDBC BUOYS

Hurricane Katrina

MEAN WAVE DIRECTIONS (DIR) AT NDBC BUOYS

Hurricane Katrina

PEAK WAVE PERIODS (TPS) AT NDBC BUOYS

Hurricane Katrina

USACE High-Water Marks

Hurricane Katrina

USACE High-Water Marks

Hurricane Katrina

FEMA/URS High-Water Marks

Hurricane Katrina

FEMA/URS High-Water Marks

Conclusions

Preliminary Implementation

- ADCIRC and SWAN have been coupled so that they:
 - Run on the same processor
 - Run on the same local mesh
 - Share information through memory
- The coupled model is efficient and scalable

Preliminary Validation

- Performed for Katrina (shown) and Rita (not shown)
- The coupled model performs surprisingly well, especially in deep water
- More resolution is needed in the Gulf of Mexico
- More physics (warm-core eddies?) may also be needed

Future Work

Implementation:

- Experiment with different methods of coupling in time
- Utilize multi-core programming environments

Verification:

- Study convergence in geographic space
- Study convergence in all other parameters (σ , θ , Δt , *etc.*)

Validation:

- Run the ADCIRC-SWAN model on the next generation of meshes
- Katrina and Rita (2005)
- Gustav and Ike (2008)