Development and Application of Coupled Hurricane Wave and Surge Models for Southern Louisiana

> JC Dietrich, JJ Westerink, AB Kennedy, HJS Fernando, CN Dawson

> > PhD Dissertation Defense Tuesday, 12 October 2010

Where We Were:

'Loose' Coupling of Hurricane Waves and Surge

S. Bunya, *et al.* (2010). "A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi, Part I: Model Development and Validation." *Monthly Weather Review* 138, 345-377.

J.C. Dietrich, *et al.* (2010). "A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi, Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita." *Monthly Weather Review* 138, 378-404.

2005 Hurricane Season

Katrina : 08/28 – 08/29

Rita : 09/22 – 09/24

2005 Hurricane Season

2005 Hurricane Season : Katrina : Inundation of New Orleans

2005 Hurricane Season : Rita : Inundation of Cameron Parish

Southeastern Louisiana

30°

29°

SL15 : Bathymetry and Topography

SL15 : Bathymetry and Topography

SL15 : Mesh Sizes

SL15 : Domain Decomposition

ADCIRC : Governing Equations

ADvanced CIRCulation (ADCIRC):

• Solves the Generalized Wave Continuity Equation (GWCE):

$$\frac{\partial^2 \zeta}{\partial t^2} + \tau_0 \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_x}{\partial x} + \frac{\partial \tilde{J}_y}{\partial y} - UH \frac{\partial \tau_0}{\partial x} - VH \frac{\partial \tau_0}{\partial y} = 0$$

• where:

$$\tilde{J}_{x} = -Q_{x}\frac{\partial U}{\partial x} - Q_{y}\frac{\partial U}{\partial y} + fQ_{y} - \frac{g}{2}\frac{\partial\xi^{2}}{\partial x} - gH\frac{\partial}{\partial x}\left[\frac{p_{s}}{g\rho_{0}} - \alpha\eta\right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_{0}} + \left(M_{x} - D_{x}\right) + U\frac{\partial\xi}{\partial t} + \tau_{0}Q_{x} - gH\frac{\partial\xi}{\partial x}$$
$$\tilde{J}_{y} = -Q_{x}\frac{\partial V}{\partial x} - Q_{y}\frac{\partial V}{\partial y} - fQ_{x} - \frac{g}{2}\frac{\partial\xi^{2}}{\partial y} - gH\frac{\partial}{\partial y}\left[\frac{p_{s}}{g\rho_{0}} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_{0}} + \left(M_{y} - D_{y}\right) + V\frac{\partial\xi}{\partial t} + \tau_{0}Q_{y} - gH\frac{\partial\xi}{\partial y}$$

• Solves the vertically-integrated momentum equations:

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} - fV = -g \frac{\partial}{\partial x} \left[\xi + \frac{p_s}{g\rho_0} - \alpha \eta \right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_0 H} + \frac{M_x - D_x}{H}$$
$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + fU = -g \frac{\partial}{\partial y} \left[\xi + \frac{p_s}{g\rho_0} - \alpha \eta \right] + \frac{\tau_{sy} + \tau_{by}}{\rho_0 H} + \frac{M_y - D_y}{H}$$

ADCIRC : Flowchart : Implicit Solution of GWCE

ADCIRC : Flowchart : Explicit Solution of GWCE

Katrina : Water Levels : 2005/08/29

Katrina : Water Levels : Maximum

Katrina : High-Water Marks

'Loose' Coupling to STWAVE

STeady-state WAVE (STWAVE):

- Solves the action balance equation along backward-traced rays
- Developed by USACE

Passing of Radiation Stress Gradients:

Integrate action density to get radiation stresses:

$$S_{xx} = \rho_0 g \iint \left(n \cos^2 \theta + n - \frac{1}{2} \right) \sigma N d\sigma d\theta$$

 $S_{xy} = \rho_0 g \iint (n \sin \theta \cos \theta) \sigma N d\sigma d\theta$

$$S_{yy} = \rho_0 g \iint \left(n \sin^2 \theta + n - \frac{1}{2} \right) \sigma N d\sigma d\theta$$

Pass the gradients as surface stresses to ADCIRC:

$$\tau_{sx,waves} = -\frac{\partial S_{xx}}{\partial x} - \frac{\partial S_{xy}}{\partial y}$$
$$\tau_{sy,waves} = -\frac{\partial S_{xy}}{\partial x} - \frac{\partial S_{yy}}{\partial y}$$

'Loose' Coupling to STWAVE

Katrina : Significant Wave Heights : Maximum

Katrina : Radiation Stress Gradients : Maximum

Katrina : Wave-Driven Setup : Maximum

What We Did: 'Tight' Coupling of SWAN+ADCIRC

J.C. Dietrich, *et al.* (2010). "Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations." *Journal of Atmospheric and Oceanic Technology*, in press.

J.C. Dietrich, *et al.* (2010). "Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge." *Journal of Scientific Computing*, in preparation.

Disadvantages of 'Loose' Coupling

- 1. Interpolation at Wave Model Boundaries
- 2. Coverage in Deep Water
- 3. Iteration
 - Models coupled through input files
 - Winds, water levels and currents passed to wave model
 - Radiation stress gradients passed to ADCIRC
 - Process can be automated, but is still inefficient

Disadvantages of 'Loose' Coupling

4. Interpolation:

- Wave and circulation models run on different grids
 - Wave models on structured meshes
 - ADCIRC on unstructured, finite element mesh
- Results must be interpolated onto each mesh

Disadvantages of 'Loose' Coupling

- 5. Resolution in wave breaking zones:
 - Circulation model has no knowledge of wave breaking
 - Must over-resolve these zones

Simulating WAves Nearshore (SWAN):

• Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left[\left(\vec{c}_g + \vec{U} \right) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = \frac{S_{tot}}{\sigma}$$

• Sweep the action densities throughout the domain:

Schematic of Coupling:

- ADCIRC is run for 600 seconds ($\Delta t = 1 \text{ sec}$)
- Water levels (ζ) and currents (u, v) are passed to SWAN
- SWAN is run for 600 seconds ($\Delta t = 600$ sec)
- Radiation stresses (S) and their gradients ($\tau_{s,waves}$) are computed; gradients are passed to ADCIRC
- Repeat

• SWAN and ADCIRC are always extrapolating in time

Katrina : Significant Wave Heights : Maximum

Katrina : Radiation Stress Gradients : Maximum

Katrina : Wave-Driven Setup : Maximum

Where We're Going: Better Integration of Hurricane Physics

J.C. Dietrich, *et al.* (2010). "Hurricane Gustav (2008) Waves, Storm Surge and Currents: Hindcast and Synoptic Analysis in Southern Louisiana." *Monthly Weather Review*, in review.

SL16 : Bathymetry and Topography

SL16 : Bathymetry and Topography

SL16 : Mesh Sizes

Integrated Coupling of Bottom Friction:

• ADCIRC converts its Manning's *n* values to bottom stresses:

$$\tau_b = \rho_0 \frac{gn^2}{H^{1/3}} \frac{Q}{H}$$

• In SWAN, bottom friction is a dissipation term:

$$S_{ds,b}(\sigma,\theta) = -C_b \frac{\sigma^2}{g^2 \sinh^2 kH} N(\sigma,\theta)$$

where C_b is a bottom friction coefficient that can be formulated as:

$$C_b = f_w \frac{g}{\sqrt{2}} U_{rm}$$

where f_w depends on the bottom roughness length scale, K_N .

• We can relate the friction lengths to our Manning's *n* values:

$$K_N = H \exp\left[-\left(1 + \frac{\kappa H^{1/6}}{n\sqrt{g}}\right)\right]$$

• Now we can pass spatially-variable friction lengths to SWAN!

Wind Drag based on Storm Sectors:

• SWAN+ADCIRC applies a sea-surface momentum stress:

 $\tau_{s,winds} = \rho_0 C_d U_{10}^2$

with similar expressions for the wind drag coefficient:

 $C_{d} = \frac{1}{1000} \left(\frac{15}{20} + \frac{40}{600} U_{10} \right) \quad \text{ADCIRC (Garratt, 1977)}$ $C_{d} = \frac{1}{1000} \left(\frac{16}{20} + \frac{39}{600} U_{10} \right) \quad \text{SWAN (Wu, 1982)}$

with an upper limit of $C_d \leq 0.002$.

Hurricane Season 2008

Gustav : Storm Surge near New Orleans

30°

Gustav : Track

Gustav : 2008/09/01/1400Z : Winds

Gustav : 2008/09/01/1400Z : Significant Wave Heights

Gustav : 2008/09/01/1400Z : Radiation Stress Gradients

Gustav : 2008/09/01/1400Z : Water Levels

Gustav : 2008/09/01/1400Z : Currents

Increased Availability of Measurement Data

	Katrina (2005)		Gustav (2008)	
High-Water Marks	Total:	399	Total:	82
	URS/FEMA	193	URS/FEMA	82
	USACE	206		
Time Series	Water Levels:	9	Water Levels:	443
			CSI	5
			Andrew Kennedy	16
	NOAA	3	NOAA	26
			USACE-CHL	6
		an na	USACE	54
			USGS (Deployable)	61
	USGS (Permanent)	6	USGS (Permanent)	48
			CRMS	243
	Wave Parameters:	17	Wave Parameters:	39
	NDBC	14	NDBC	12
	CSI	3	CSI	5
		19/1	Andrew Kennedy	16
		1	USACE-CHL	6

Gustav : Validation : Significant Wave Heights

Validation : High-Water Marks

MEASURED PEAK VALUE, m

Conclusions and Future Work

'Loose' Coupling of Waves and Surge:

- Successful hindcasts of Katrina and Rita
- WAM and STWAVE were clunky but effective

'Tight' Coupling of SWAN+ADCIRC:

- Wave model uses the same unstructured mesh
- Information passed dynamically
- SWAN is as accurate as WAM and STWAVE
- Coupled model is efficient to 1000s of computational cores

SWAN+ADCIRC Hindcast of Gustav:

- Next generation of meshes in Louisiana and Texas
- Wealth of measurement data, including nearshore waves
- Must create meshes with both models in mind

Acknowledgments

Adviser:

• JJ Westerink

Committee Members:

• AB Kennedy, HJS Fernando, CN Dawson

Modeling Communities:

- ADCIRC: RL Kolar, RA Luettich Jr, and many others
- SWAN: M Zijlema, LH Holthuijsen
- STWAVE: JM Smith, DT Resio, CJ Bender
- WAM: RE Jensen

CHL Members (Past and Present)

Family and Friends