Issues in Wave-Circulation Coupling

JC Dietrich, CN Dawson, JD Meixner, J Proft University of Texas at Austin JJ Westerink, AB Kennedy University of Notre Dame RA Luettich Jr University of North Carolina at Chapel Hill EJ Kubatko The Ohio State University M Zijlema, LH Holthuijsen Delft University of Technology

> ADCIRC Workshop, Stennis Space Center Monday, 18 April 2011

SWAN+ADCIRC(CG):

'Tight' Coupling of Hurricane Waves and Surge

M. Zijlema (2010). "Computation of Wind-Wave Spectra in Coastal Waters with SWAN on Unstructured Grids." Coastal Engineering, 57, 267-277.

J.C. Dietrich, *et al.* (2011). "Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations." *Coastal Engineering*, 58, 45-65.

J.C. Dietrich, *et al.* (2011). "Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Synoptic Analysis and Validation in Southern Louisiana." *Monthly Weather Review*, in press.

A.B. Kennedy, et al. (2011). "Origin of the Hurricane Ike Forerunner Surge." Geophysical Research Letters, in press.

J.C. Dietrich, *et al.* (2011). "Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge." *Journal of Scientific Computing*, in preparation.

Simulating WAves Nearshore (SWAN):

• Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left[\left(\vec{c}_g + \vec{U} \right) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = \frac{S_{tot}}{\sigma}$$

• Sweep the action densities throughout the domain:

'Tight' Coupling:

• Models share same local sub-meshes, communicate locally:

SL16 Mesh:

• Bathymetry and Topography:

SL16 Mesh:

• Mesh Sizes:

		Katrina	Rita	Gustav	lke
High-Water Marks	USACE	206	~	Phane - a	N. A.
	URS/FEMA	193	84	82	177
Water Levels	CRMS	13		232	240
	USGS (Perm)	6		18	22
	USGS (Depl)		23	24	16
	USACE		-61	39	41
	USACE-CHL			6	6
	NOAA	3		23	23
	Kennedy			16	
	CSI	1.	11	5	5
Waves	USACE-CHL	81/		6	6
	Kennedy			16	
	CSI	3	2	5	5
	NDBC	14	11	12	12

MEASURED PEAK VALUE, m

Error Norms for Time Series Data:

• Scatter Index (SI):

$$SI = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(E_i - \overline{E}\right)^2}}{\frac{1}{N} \sum_{i=1}^{N} |O_i|}$$

• Bias:

$$Bias = \frac{\frac{1}{N} \sum_{i=1}^{N} E_i}{\frac{1}{N} \sum_{i=1}^{N} |O_i|}$$

where: *N* is the number of observations, $E_i = S_i - O_i$ is the error between the modeled (S_i) and measured (O_i) values, and \overline{E} is the mean error.

			Katrina	Rita	Gustav	lke
Water Levels	S	m	1.01	1.09	0.95	0.93
		R^2	0.93	0.79	0.80	0.77
		SI	0.19	0.28	0.24	0.16
		Bias	0.14	0.15	0.14	-0.07
Waves	H _s	SI	0.23	0.23	0.34	0.29
		Bias	0.05	0.43	0.35	0.09
	T_{ρ}	SI	0.22	0.25	0.53	0.57
		Bias	0.07	0.25	-0.03	0.02
	T _{m-10}	SI	0.15	0.12	0.22	0.16
		Bias	0.09	0.18	-0.03	0.13

NUMBER OF COMPUTATIONAL CORES

SWAN+ADCIRC(DG):

Effect of Coupled Circulation on Nearshore Waves

E.J. Kubatko, *et al.* (2006). *"hp* Discontinuous Galerkin Methods for Advection Dominated Problems in Shallow Water Flow." *Computer Methods in Applied Mechanics and Engineering*, 196, 437-451.

C.N. Dawson, et al. (2011). "Discontinuous Galerkin Methods for Modeling Hurricane Storm Surge." Advances in Water Resources, in press.

J.C. Dietrich, et al. (2011). "Effect of Coupled Circulation on a Nearshore Wave Model." Coastal Engineering, in preparation.

Discontinuous Galerkin (DG):

- Uses local basis functions that can be *p*-adaptive.
- Solution can be discontinuous along element edges:

Hurricane Ike (2008):

• Made landfall near Galveston, TX:

EC2001 Mesh:

• Bathymetry and Topography:

EC2001 Mesh:

• Mesh Sizes:

2008 / 09 / 12 / 2200Z:

• Wind Speeds:

2008 / 09 / 12 / 2200Z:

• DG Water Levels:

2008 / 09 / 12 / 2200Z:

• Difference between DG and ADCIRC Water Levels:

Kennedy Gages:

• DG Water Levels:

2008 / 09 / 12 / 2200Z:

• DG Currents:

2008 / 09 / 12 / 2200Z:

• Difference between DG and ADCIRC Currents:

2008 / 09 / 12 / 2200Z:

• SWAN+DG Wave Heights:

Kennedy Gages:

• SWAN+DG Wave Heights:

2008 / 09 / 12 / 2200Z:

• Effect of Circulation on SWAN+DG Wave Heights:

Kennedy Gages:

• Effect of Circulation on SWAN+DG Wave Heights:

The End

Conclusions:

- DG model produces circulation that is very similar to ADCIRC:
 - Water levels are nearly identical.
 - Currents are more peaked in regions with bathymetric gradients.
- SWAN+DG simulates well the waves and storm surge on the shelf.
- SWAN solution is sensitive to circulation:
 - Wave heights increased by 1m.
 - Wave periods increased by 4s (but not shown herein).

Future Work:

• Extend SWAN+DG to high-resolution Texas mesh.