High-ResolL
for Ocean Wav

Joel ‘Casey’ Dietrich

Institute for Computational Engineering anc
University of Texas at Austin

Department of Civil and Environmental Engineering
Southern Methodist University
Wednesday, 28 March 2012



Education and Background

\'/ Post-Doctoral Researcher
- Institute for Computational Engineering and Sciences
- University of Texas at Austin
- November 2010 to present

Research Assistant
N - Department of Civil Engineering and Geological Sciences
- University of Notre Dame
o October 2010
- PhD: October 2010
Research Assistant

- School of Civil Engineering and Environmental Science

- University of Oklahoma
- June 1999 to July 2005
- MS: 23 June 2005

©



2005 Hurricane Season

Katrina : 08/28 — 08/29 | Rita : 09/22 — 09/24




Southeastern Louisiana




What We Did:
‘Tight’ Coupling of SWAN+ADCIRC

M. Zijlema (2010). “Computation of Wind-Wave Spectra in Coastal Waters with SWAN on Unstructured Grids.” Coastal Engineering,
57, 267-277.

J.C. Dietrich, et al. (2011). "Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations." Coastal
Engineering, 58, 45-65.

J.C. Dietrich, et al. (2012). “Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge.”
Journal of Scientific Computing, in press.



Some Images Stolen From Wikipedia
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Some Images Stolen From Wikipedia
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Southeastern Louisiana




SL16 : Bathymetry and Topography
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SL16 : Mesh Sizes
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SL16 : Domain Decomposition
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ADCIRC : Governing Equations

ADvanced CIRCulation (ADCIRC):

- Solves the Generalized Wave Continuity Equation (GWCE):
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Katrina : Water Levels : Day of Landfall
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Katrina : Water Levels : Maximum
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Katrina : High-Water Marks
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‘Tight' Coupling of SWAN+ADCIRC

Simulating WAves Nearshore (SWAN):

- Solves the action balance equation:
ON - dcyN dc,N S
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Passing of Radiation Stress Gradients:
- Integrate action density to get radiation stresses:
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- Pass the gradients as surface stresses to ADCIRC:
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Disadvantages of ‘Loose’ Coupling

1. Interpolation:
- Wave and circulation models run on different meshes
- Wave models on structured meshes
- ADCIRC on unstructured, finite element mesh
- Results must be interpolated onto each mesh
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Disadvantages of ‘Loose’ Coupling

2. Interpolation at Wave Model Boundaries
Coverage in Deep Water
4. Iteration
- Models coupled through input files
- Winds, water levels and currents passed to wave model
- Radiation stress gradients passed to ADCIRC
- Process can be automated, but is still inefficient
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‘Tight' Coupling of SWAN+ADCIRC

Simulating WAves Nearshore (SWAN):

- Communication is optimized for high-performance computing:
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‘Tight' Coupling of SWAN+ADCIRC

Schematic of Coupling:
- ADCIRC is run for 600 seconds ( Ar =1 sec)
- Water levels ( { ) and currents ( U,V') are passed to SWAN
- SWAN is run for 600 seconds ( Az = 600 sec )

- Radiation stresses ( S ) and their gradients ( 7,.... ) are computed,;
gradients are passed to ADCIRC
- Repeat
0 600 1200 1800 2400
Time: | i i I i i I i i I i i I >
ADCIRC:

SWAN:

« SWAN and ADCIRC are always extrapolating in time



‘Tight' Coupling of SWAN+ADCIRC

MINUTES PER DAY OF KATRINA SIMULATION
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Node Sun Blade x6420 Dell PowerEdge M610
CPU 4 Quad-core AMD Opteron 8356 | 2 Six-core Xeon 5680
Frequency 2.3 GHz 3.33 GHz
Architecture | AMD K10 (Barcelona) Intel Nehalem (Westmere-EP)




Katrina : Significant Wave Heights : Maximum
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Katrina ;: Radiation Stress Gradients : Maximum

UNIVERSITY OF

E:l) NOTRE DAME
‘ Computational Hydraulics Laboratory

0.0100

0.0050

0.0020

0.0010

0.0005

0.0002

0.0001

0.0000




Katrina : Wave-Driven Setup : Maximum
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Validation : Recent Storms

Katrina

Gustav




Gustav : Hurricane Season 2008




Gustav : Storm Surge near New Orleans

Nancy Powell, USACE
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Validation : Increased Availability of Measurement Data

Katrina (2005) Gustav (2008)
High-Water Marks | Total: 399 | Total: 82
URS/FEMA 193 URS/FEMA 82
USACE 206
Time Series Water Levels: 9 | Water Levels: 443
CSl 5
Andrew Kennedy 16
NOAA 3 NOAA 26
USACE-CHL 6
USACE 54
USGS (Deployable) 61
USGS (Permanent) 6 USGS (Permanent) 48
CRMS 243
Wave Parameters: 17 | Wave Parameters: 39
NDBC 14 NDBC 12
CSl 3 CSl 5
Andrew Kennedy 16
USACE-CHL 6




Validation : Web-Based Mapping of Results

M SWAN+ADCIRC Simulations x\;

€ ->5CH {@www.caseydietrich.com/Validation/SLlG/
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SWAN+ADCIRC Simulations on SL16
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RITA (2005)

KATRINA (2005)
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What We Are Now:
Better Understanding of Nearshore Waves and Surge

A.B. Kennedy, et al. (2011). "Origin of the Hurricane Ike Forerunner Surge.” Geophysical Research Letters, 38, LO8608.

J.C. Dietrich, et al. (2011). “Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Synoptic Analysis and Validation in Southern
Louisiana." Monthly Weather Review, 139(8), 2488-2522.

JC Dietrich, et al. (2011). “Surface Trajectories of Oil Transport along the Northern Coastline of the Gulf of Mexico.” Continental Shelf
Research, in review.

M.E. Hope, et al. (2012). “Hindcast and Validation of Hurricane lke (2008) Waves, Forerunner, and Storm Surge.” Monthly Weather
Review, in preparation.



Applications : Surge Barrier Design : USACE G




Applications : Flood Insurance Rate Maps : FEMA

Joint Probability Method with Optimal Sampling (JPM-0OS):
- Hypothetical storms with varying characteristics.
- Use results to develop 100yr flood maps.

SL15V3_2007_r10

Storm 285
Max. Water Level (Ft)

Storm 285:

- Radius to max winds: 17.7 Nmi

- Minimum central pressure: 900 mb
|




Applications : Hurricane Forecasting : Irene (2011)
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Applications : Nearshore Oil Transport : NSF/DHS
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Applications : Surge Forerunner : Ike (2008)
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Where We’re Going:
Increasing Efficiency and Accuracy with DG

E.J. Kubatko, et al. (2006). “hp Discontinuous Galerkin Methods for Advection Dominated Problems in Shallow Water Flow.” Computer
Methods in Applied Mechanics and Engineering, 196, 437-451.

C.N. Dawson, et al. (2011). “Discontinuous Galerkin Methods for Modeling Hurricane Storm Surge.” Advances in Water Resources, 34,
1165-1176.

J.C. Dietrich, et al. (2012). “Effect of Coupled Circulation on a Nearshore Wave Model.” Coastal Engineering, in preparation.

J.D. Meixner, et al. (2012), in preparation.



DG : Moving toward Adaptive Meshes

Discontinuous Galerkin (DG):
- Integrate over each local element instead of the global domain.
- Elements communicate through fluxes.
- Solution can be discontinuous along element edges.

- Much easier to refine adaptively the mesh in sizes (h) and/or
interpolation order (p).




DG : Storm Surge during lke

Contents lists available at Scie

¥ Advances in Water R

journal homepage: www.elsevier.co

Discontinuous Galerkin methods for modeling

Clint Dawson #*, Ethan J. Kubatko®, Joannes ]. Westerink ¢, C

Craig Michoski ¢, Nishant Panda®

“Insarute for Computanonad Engineering and Sciences, 1 University Station, C0200, Austin, TX 78712, U
® Deparmment of Gvil and Environmental Engineering and Geodetic Science, The Ohio State University,
< Compurarional Hydraulics Laborataory, Department of Civil Engineering and Geological Sciences, 156 Fi

ARTICLE INFO ABSTRACT

Article history:
Available online 27 November 2010

Storm surge due to hurricanes and tropi
and long-term damage to coastal ecosys
used for two primary purposes: forecasti
evacuation of coastal populations, and
gation strategies, coastal restoration ar

Storm surge is modeled using the sh
events, models of wave energy. In this
in spherical coordinates. Tides, riverine
and wind stress are all important for ¢
ently multi-scale, bothinspace and
ments in acquiring high-fidelity input (
flow rates, levees, raised roads and rail

Keywords:

Discontinuous Galerkin methods
Hurricane storm surge

Shallow water equations

MAX ELEV: ke CG soltion

(a) ADCIRC

MAX ELEV: ke DG soltion

(b) DG

Fig. 8. Maximum water levels for ADCIRC (a) and DG (b) solutions during Hurricane
lke. Water elevation is in meters relative to the North American Vertical Datum of
1988 (NAVDSS). The solution is plotted in the region between —93.5 and —95.5°
longitude and 29 and 307 latitude.

using unstructured finite element meshes:
flows, wetting and drying and multi-scale features of the solution.

The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to acau-
rately capture storm surge physics. The DG method was developed for modeling shodks and advection-




DG : Developing a Spectral Wave Model

Spectral Action Balance Equation:
- DG is ideal for advection-dominated problems:

oN . dc,N dc, N S
—+V4-[(E +U)N]+ 07 \ Fo? _ P
! d0 Jo o

- Early success in one geographic dimension:

=1 =3
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1.42f| = p=10=2 *
*  SWAN
1.4¢ analytic
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- 1.36
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Example in 1D:
1.32f - Significant wave heights for a test case
sl iy with an opposing current.
' - DG wave model can be more accurate
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Conclusions and Future Work

‘Tight’ Coupling of SWAN+ADCIRC:
- Models use same unstructured mesh
- Information passed dynamically through local cache
- Coupled model is efficient to 1000s of computational cores
- SWAN is as accurate as other, structured-mesh wave models
- Wealth of measurement data

Better Understanding of Nearshore Waves and Circulation:
- Design of surge barrier to protect New Orleans
- Development of floodplain risk maps
- Forecasting of hurricanes, oil spill

Continue the Development of DG Models:
- Coupling of SWAN with ADCIRC(DG)
- Developing a DG spectral wave model



Thank Youl!

2011 Hurricane Season
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