Surface Trajectories of Oil Transport in the Gulf of Mexico

JC Dietrich

Institute for Computational Engineering and Sciences University of Texas at Austin

ADCIRC Workshop

Silver Spring, Maryland Monday, 23 April 2012

JC Dietrich, et al. (2012). "Surface Trajectories of Oil Transport along the Northern Coastline of the Gulf of Mexico." *Continental Shelf Research*, in press, DOI:10.1016/j.csr.2012.03.015.

Who Are We?

JC Dietrich, CJ Trahan, CN Dawson

Institute for Computational Engineering and Sciences, University of Texas at Austin

MT Howard, G Wells

Center for Space Research, University of Texas at Austin

JG Fleming

Seahorse Coastal Consulting, Morehead City, North Carolina

RJ Weaver, RA Luettich Jr

Institute of Marine Sciences, Univ. of North Carolina at Chapel Hill

S Tanaka, JJ Westerink

Dept. of Civil Engineering and Geological Sciences, University of Notre Dame

L Yu, A Lu

Department of Computer Science, Univ. of North Carolina at Charlotte

K Vega, A Kubach

Texas Advanced Computing Center, University of Texas at Austin

KM Dresback, RL Kolar

School of Civil Engineering and Environmental Science, University of Oklahoma

C Kaiser

Dept. of Oceanography and Coastal Sciences, Louisiana State University

RR Twilley

Vice President for Research, University of Louisiana at Lafayette

Deepwater Horizon Oil Spill (2010)

Deepwater Horizon was a 9-year-old, mobile offshore drilling unit Located 66km from the Louisiana coastline, in 1500m of water

Platform was engulfed on 20 April by an explosion of methane gas; structure burned for more than 24hr before sinking on 22 April

Explosion killed 11 workers and injured 17 Oil spill flow rates:

- Estimated to have begun at a rate of 9900 m³ d⁻¹
- Diminished over time to a final rate of 8400 m³ d⁻¹ on 15 July 2010
 Emergency responders relied on satellite and aerial imagery

Nearshore Oil Transport : Motivation

Satellite imagery can only show current location of the slick

- Where will the oil move?
- What happens if a hurricane approaches?

Forecasts need to be <u>accurate</u> and <u>fast</u>

- Share computed circulation with NOAA, other spill modelers
- Share oil transport with emergency managers in real time (<u>http://adcirc.org/oilspill</u>)

Nearshore Oil Transport : Motivation

Ensemble forecasts via the Ocean Circulation Group at the University of South Florida: http://ocgweb.marine.usf.edu/~liu/oil.html

Nearshore Oil Transport : Challenges

Nearshore Oil Transport : Lagrangian Particles

Nearshore Oil Transport : Lagrangian Particles

Particle positions are tracked through the unstructured mesh:

$$\vec{x}_{p}(t + \Delta t) = \vec{x}_{p}(t) + \vec{u}(\vec{x}_{p}, t)\Delta t + \vec{D}$$

- where the dispersion uses a stochastic perturbation (Proctor et al., 1994):

$$\vec{D} = (2R - 1)\sqrt{\vec{c}\vec{E}_v\Delta t}$$

- with: 0 < R < 1 is a random number, $\vec{E}_v = 10 \text{ m}^2/\text{s}$ are turbulent coefficients, and $\vec{c} = 12$ are scaling coefficients;

- and where the velocities are a linear combination of currents and winds:

$$\vec{u}\left(\vec{x}_{p},t\right) = F_{c}\vec{u}_{c}\left(\vec{x}_{p},t\right) + F_{w}\vec{u}_{w}\left(\vec{x}_{p},t\right)$$

- with: $F_c = 1$ and $F_w = 0$.

Using hybrid OpenMP/MPI, 11M particles can be tracked on a 10M-element mesh in about **5.5 min/day** using 256 cores on TACC Ranger.

Nearshore Oil Transport : Flow Chart

Validation : Satellite Imagery

Examples of available imagery during 13-23 June 2010:

- NESDIS consolidated observations from a suite of satellite sensors

Validation : Mid-June

Validation : Mid-June

Satellite Imagery Predicted Particle Locations

Satellite Imagery Predicted Particle Locations

Satellite Imagery Predicted Particle Locations

Satellite Imagery **Predicted Particle Locations**

Satellite Imagery **Predicted Particle Locations**

Satellite Imagery **Predicted Particle Locations**

Validation : Mid-June : Computed Overlap

Overlap of our predictions to observations:

- Solid blue Total areas of observed oil in satellite imagery
- Solid red- Total areas of predicted locations of Lagrangian particles
- Dashed red Overlap between predictions and observations

After one week of simulation, overlap is about 60 percent

- Good qualitative and quantitative match to observations

Hypothetical : Initial Conditions

Hypothetical : Hurricane Katrina (2005)

Hypothetical : Hurricane Ike (2008)

Conclusions

Automated system runs successfully in real-time Good match to overall movement of oil spill

Some small-scale features are modeled successfully
Validation is highly sensitive to quality of overhead imagery
Oil would have been influenced heavily by a hurricane in the region

- Movement into marshes of southern Louisiana
- Movement along the coastline toward Texas

