Hurricane Wave and Storm Surge Forecasting for the Carolina Coast

JC Dietrich¹, RA Luettich Jr², JG Fleming³, BO Blanton⁴

¹Civil, Construction, and Environmental Engineering, NC State University ²Institute of Marine Sciences, University of North Carolina at Chapel Hill

³Seahorse Coastal Consulting, Morehead City, NC

⁴Renaissance Computing Institute, Chapel Hill, NC

Lecture Series: *Science on the Sound* Coastal Studies Institute, Manteo, NC 21 November 2013

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - Assistant Professor: 08/2013 to present

CCEE Department, Mann Hall, NCSU

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

University of Texas at Austin

- ► Institute for Computational Engineering and Sciences
 - ▶ Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ▶ Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - Assistant Professor: 08/2013 to present

University of Texas at Austin

- ▶ Research Associate: 09/2012 to 07/2013
- ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ► Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

Hurricane Season 2005 - Impacts on Southern Louisiana

Katrina: 08/28 - 08/29

Rita: 09/22 - 09/24

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Hurricane Season 2005 - Flooding of New Orleans

▲口▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● 今今で

Hurricane Season 2005 - Flooding of New Orleans

Hurricane Season 2005 - Katrina on 29 August

S Bunya, JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part I Model Development and Validation. Monthly Weather Review, 138(2), 345-377.

JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part II Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378-404.

Introduction

About Me Hurricane Season 2005

High-Resolution Models for Southern Louisiana

Wide Range of Spatial Scales Waves and Storm Surge Tight Coupling of SWAN+ADCIRC Validation for Hurricane Gustav (2008) Engineering Applications

Real-Time Forecasting for Texas and North Carolina ADCIRC Surge Guidance System Hurricane Isaac (2012) in the Gulf Web-Based Guidance for North Carolina

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 …のへ(で)

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 - のへの

Spatial Scales - Unstructured, Finite-Element Meshes

Waves and Storm Surge - Temporal Scales

Sea surface can be described with both long and short waves

- Long waves due to tides, storm surge
- Short waves due to wind (swell and wind-sea)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Waves and Storm Surge – SWAN

For short waves, we use a model called SWAN

- SWAN = Simulating WAves Nearshore
- Does not represent the phase of each individual wave
 - Conserved quantity is the action density $N(t, x, y, \sigma, \theta)$
 - Can be integrated to compute statistical wave properties

Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\mathbf{x}} \cdot \left[(\mathbf{c}_g + \mathbf{U}) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = 0$$

Solution methods in geographic (x, y) and spectral (σ, θ) spaces:

- Gauss-Seidel in geographic space
- Iterative solution of matrix system in spectral space

Waves and Storm Surge – ADCIRC

For long waves, we use a model called ADCIRC

- ADCIRC = ADvanced CIRCulation
- Does represent the phases of tides and/or storm surge

Solves the generalized wave continuity equation for water levels ζ :

$$\frac{\partial^2 \zeta}{\partial t^2} + \tau_0 \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_x}{\partial x} + \frac{\partial \tilde{J}_y}{\partial y} - UH \frac{\partial \tau_0}{\partial x} - VH \frac{\partial \tau_0}{\partial y} = 0$$

Solves the depth-averaged momentum equations for currents (U, V):

$$\frac{DU}{Dt} - fV = -g\frac{\partial}{\partial x} \left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_0 H} + \frac{M_x - D_x}{H}$$

$$\frac{DV}{Dt} + fU = -g\frac{\partial}{\partial y}\left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_0 H} + \frac{M_y - D_y}{H}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SWAN+ADCIRC – Flow Chart

JC Dietrich, et al. (2011). Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45-65, DOI:10.1016/j.coastaleng.2010.08.001.

Gustav (2008) - Near Flooding of New Orleans

Gustav (2008) - Near Flooding of New Orleans

- * ロ > * 個 > * 目 > * 目 > ・ 目 - の & ()・

Gustav (2008) - Near Flooding of New Orleans

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の & ()・

Gustav (2008) - Day of Landfall

JC Dietrich, et al. (2011). Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Validation and Synoptic Analysis in Southern Louisiana. Monthly Weather Review, 139(8), 2488-2522.

Gustav (2008) - High-Water Marks

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Gustav (2008) - High-Water Marks

MEASURED PEAK VALUE, m

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gustav (2008) - High-Water Marks

JC Dietrich, et al. (2012). Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge. Journal of Scientific Computing, 52(2), 468-497.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Applications – Surge Barrier Design – USACE

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Applications – Surge Barrier Design – USACE

Applications – Surge Barrier Design – USACE

Applications – Floodplain Risk Maps – FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

- Hypothetical storms with varying characteristics
- ► Combine results to develop 100-yr flood maps

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Applications – Floodplain Risk Maps – FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

- Hypothetical storms with varying characteristics
- ► Combine results to develop 100-yr flood maps

ASGS – Introduction

SWAN+ADCIRC can be employed in real-time via the ASGS

- ► ASGS = ADCIRC Surge Guidance System
- Everything happens automatically
 - Models are initialized, run and processed by Perl scripts

Wind fields from two sources:

- 1. Under normal conditions:
 - Downloaded from NAM model output by NOAA/NCEP
 - Converted into format compatible with SWAN+ADCIRC
- 2. Under hurricane conditions:
 - Download advisories from NOAA/NHC
 - Generate wind field using parametric model (Holland, 1980)

Guidance can be shared in multiple formats:

- Raster images (JPG, PNG, etc.)
- Geo-referenced raster images (Google Earth, GIS)
- Web service (coastalemergency.org)

ASGS - Flow Chart

ASGS – Development Teams

University of North Carolina at Chapel Hill

- Provide forecasts for Carolina and surrounding states via Google Maps application (nc-cera.renci.org)
- Guidance during Irene (2011) prompted Coast Guard to shift operations to avoid flooding of operations center

Louisiana State University

 Provide forecasts for Louisiana and northern Gulf states via Google Maps application (cera.cct.lsu.edu)

University of Texas at Austin

- Provide forecasts for storms impacting Texas coastline
- Partnerships with Texas State Operations Center
- During Isaac (2012), guidance shared with NWS offices in Fort Worth, Tallahassee and Miami

Isaac (2012) - Disorganized Movement across the Gulf

Passed over Hispaniola and Cuba as a tropical storm

- Low central pressure
- Late development of core

Finally developed into Category 1 storm as it approached Louisiana

Isaac (2012) - Slow Crawl across Southern Louisiana

Two landfalls over 28-29 August:

- Mississippi River delta:
 - ▶ 1845 CDT / 2345 UTC
- Port Fourchon:
 - 0200 CDT / 0700 UTC

Extremely slow moving storm:

- Heavy rainfall:
 - 20in in New Orleans
 - 10in in Mississippi
- Surge pushed into marshes:
 - 3.4m near Shell Beach
 - 2.5m in Mississippi

Isaac (2012) - Flooding outside New Orleans

Tested protection system around metropolitan New Orleans

- No flooding in city proper
- Overtopped levees around surrounding communities

Isaac (2012) - Track Uncertainty

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Isaac (2012) – Maximum Significant Wave Heights

Advisory 20:

- Issued 25 August 2200 CDT
- Last forecast with projected landfall in Florida

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Isaac (2012) – Maximum Significant Wave Heights

Advisory 24:

- Issued 26 August 2200 CDT
- First forecast with projected landfall in Louisiana

Isaac (2012) – Maximum Significant Wave Heights

Advisory 28:

- Issued 27 August 2200 CDT
- Forecast issued less than 24hr before initial landfall

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで

JC Dietrich, et al. (2013). Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge Using SWAN+ADCIRC and FigureGen. Computational Challenges in the Geosciences, The IMA Volumes in Mathematics and its Applications, 156, 49-70, DOI: 10.1007/978-1-4614-7434-0.3.

CERA for NC - Web-Based Guidance

CERA for NC – Waves and Coastal Flooding

Updated everyday with new guidance:

Normal conditions with base meteorology from NOAA/NCEP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extreme conditions with storm advisories from NOAA/NHC

Guidance is interactive within Google Maps:

- View results as a time series or as maxima
- Select layers for:
 - Water levels (above MSL or above ground)
 - Waves (significant heights, peak periods)
 - Wind speeds
 - Hydrographs at NOAA/NOS gage stations

CERA for NC – Unstructured Mesh

▲ロト ▲圖ト ▲画ト ▲画ト 三直 …のへ(で)

CERA for NC – Unstructured Mesh

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

CERA for NC - Web-Based Guidance

Conclusions

High-resolution models for southern Louisiana:

- Resolution varies from kilometers to meters in unstructured mesh
- Validation to wealth of measurement data

Real-time forecasting for Texas and North Carolina:

- ASGS can provide guidance in variety of formats
- ▶ Useful information despite track uncertainty during Isaac (2012)
- CERA Web-based guidance for NC coast

