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Abstract On large geographic scales, ocean waves are represented in a spectral sense via
the action balance equation, which propagates action density through both geographic and
spectral space. In this paper, a new computational spectral wave model is developed by using
discontinuous Galerkin (DG) methods in both geographic and spectral space. DG methods
allow for the use of unstructured geographic meshes and higher-order approximations for
action propagation in both geographic and spectral space, which we show leads to increased
accuracy. This DG spectral wave propagation model is verified and validated through compar-
isons to manufactured and analytic solutions as well as to the Simulating WAves Nearshore
(SWAN) model. Coupled wave/circulation models are needed for many applications includ-
ing for the interaction between waves and currents during daily wind and tide driven flows.
We loosely couple the new DG spectral wave model to the DG Shallow Water Equation Model
(DG-SWEM), an existing DG circulation model. In addition to formulating the DG method
for the coupled wave/circulation model, we derive an a priori error estimate. Preliminary
numerical results of the DG coupled wave/circulation model are presented with comparisons
to DG-SWEM coupled tightly to SWAN.
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1 Introduction

Waves and circulation processes interact in daily wind and tide driven flows and in more
extreme events such as hurricanes. The winds blowing over the shallow continental shelf cre-
ate storm surge and currents, which push waves farther inland and/or shift them alongshore.
Meanwhile, offshore and local waves dissipate due to changes in bathymetry and bottom fric-
tion, and this dissipation creates alongshore currents and set-up. However, waves and currents
are modeled separately using different approaches despite their interaction. Long-wave cir-
culation processes, which include currents, tides and storm surge, can be represented by the
shallow water equations, which conserve mass and momentum. This approach is impractical
for short, wind-driven waves on large geographic scales due to the fine resolution that would
be required. Therefore, wind-waves are instead represented in a spectral sense, governed by
the action balance equation [13], which propagates action density through both geographic
and spectral space. Even though wind-waves and circulation are modeled separately, it is
important to account for their interactions by coupling their respective models. In the Gulf
of Mexico, the wave-induced set-up can contribute as much as 35 percent of the total water
column [10].

SWAN+ADCIRC is a tightly-coupled wave/circulation model that couples the Simulat-
ing WAves Nearshore (SWAN) model, a widely-used nearshore wave model [1], and the
ADvanced CIRCulation (ADCIRC) model, a widely-used coastal circulation model [20].
Because SWAN has recently been extended to run on unstructured meshes [27], the cou-
pled model runs on the same unstructured mesh. This eliminates interpolation error that
occurs when two different meshes are used instead. In addition, unstructured meshes allow
for greater flexibility and refinement, which are needed to properly resolve and represent
complex coastal regions. The coupled model is run on the same executable and information
is passed directly through local memory. SWAN+ADCIRC has successfully been used for
hindcasting recent hurricanes in the Gulf of Mexico [7,8,10].

ADCIRC employs a continuous-Galerkin (CG) finite-element method, which is limited to
linear approximations, has difficulties handling strong advection and is not locally mass con-
servative [4]. Recent efforts have extended ADCIRC to use a discontinuous-Galerkin (DG)
method; this DG Shallow Water Equation Model (DG-SWEM) can employ higher order
approximations and can handle advection dominated flows [16]. In addition, DG models are
locally and globally conservative, which can be important when coupling to transport equa-
tions [3,6]. DG-SWEM is mature, so a comparison to ADCIRC(CG) is not considered herein.
In this work, DG-SWEM has been coupled tightly with SWAN, in a manner similar to [10],
which allows both models to run as the same executable program, and on the same unstruc-
tured mesh. However, the finite-difference solution method in SWAN requires information
at the vertices, so high-order information from DG-SWEM is lost in the coupling.

The unstructured-mesh version of SWAN is one example of the shift within the spectral
wave modeling community toward unstructured meshes, either by adapting finite difference
methods (as in SWAN [27]) or implementing finite volumes [23] or finite elements [14].
However, all these models still employ finite differences in spectral space. Another model
utilizes DG in geographic space with a collocation method in spectral space [26]. In contrast
to these existing models, we investigate DG methods in both geographic and spectral space for
our spectral wave model. Using DG methods allows for easy implementation of higher-order
approximations in both geographic and spectral space. We show that utilizing higher-order
approximations, particularly in spectral space, leads to higher accuracy. In addition, we find
it can be more beneficial to increase the order of approximation than refine the mesh. This
could be particularly beneficial when refinement is not an option to obtain increased accuracy
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due to specific mesh requirements for a source term formulation. The resulting coupled DG
wave/circulation model executes on the same unstructured mesh, which eliminates interpo-
lation error between meshes as does the previously coupled SWAN+ADCIRC model [10].
In addition, higher-order information can be passed between the models.

Thus, DG-SWEM is coupled tightly with SWAN, or loosely with a new DG wave model.
The main focus of this paper is to formulate the DG method for the coupled wave propaga-
tion/circulation model and perform an a priori error estimate. Although this DG formulation
of the shallow water equations has been analyzed in [5], no coupled wave/circulation model
has been analyzed for any numerical scheme. We also present verification and validation
of the DG spectral wave model including comparisons to SWAN and preliminary numeri-
cal results of the coupled DG wave/circulation model comparing to DG-SWEM coupled to
SWAN.

This paper is organized as follows. In the following section we introduce the governing
equations of the coupled wave/circulation model as well as some necessary notations and
definitions. We continue in Sect. 3 by formulating the weak form, defining the approximation
spaces, and formulating the discrete weak form of the coupled model. In Sect. 4, we form
the error equations which are necessary for performing the a priori error estimate presented
in Sect. 5. We continue in Sect. 6 with verification and validation of the DG spectral wave
model and preliminary results of the coupled wave/circulation models. Concluding remarks
are in Sect. 7.

2 Governing Equations

The coupled wave/circulation model consists of the shallow water equations, which describe
the circulation processes, and the action balance equation, which describes waves in a statis-
tical sense. We simplify the error analysis that follows by only considering the geographic
domain to be one-dimensional; however, all arguments in the analysis are valid in two-
dimensions and the numerical results presented in Sect. 6 are also in two-dimensions. We
consider the coupled model on the domain Ω , which is a tensor product of the geographic
domain, Ξ ∈ R, and the spectral domain, κ = (σ, θ) ∈ R

2 where σ, 0 < σ ≤ σmax, is the
relative frequency, which is the frequency observed in a frame of reference moving with the
current, and θ is the wave direction, so Ω = Ξ × κ ∈ R × R

2, for time t > 0. We denote
the boundary of the domain as ∂Ω with outward normal n = (nx , nσ , nθ ) and denote the
boundary of the geographic domain as ∂Ξ with outward normal nx . The one-dimensional
coupled wave/circulation system for which we perform the error analysis consists of the
continuity equation [5]

ξt + ∇x · (u H) = 0, (1)

the non-conservative form of the momentum equation

ut + u · ∇x u + g∇xξ − μΔu = Fx , (2)

and the action balance equation [1]

Nt + ∇ · cN = S

σ
, (3)

where ∇∗ = ∂
∂∗ and ∇ = (

∂
∂x , ∂

∂σ
, ∂

∂θ

)
. The unknown variables are ξ , the elevation of the

free water surface from the geoid; u, the depth-integrated velocity; and N , the action density.
H = ξ + hb is the total height of the water column where hb is the depth of the water below
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the geoid (bathymetry); g is the gravitational acceleration; μ > 0 is the eddy viscosity; and
Fx is the forcing function. The forcing term includes the wave radiation stress gradient, the
Coriolis effect, tidal potential and bottom friction. Here for simplicity in the analysis, the
only forcing considered is due to the wave radiation stress gradient; that is

Fx = τsx,wave

ρH

where ρ is the density of the water. The radiation stress gradient is [19]

τsx,wave = −∇x Sxx ,

where

Sxx = ρg
∫∫ ((

n cos2 θ + n − 1

2

)
σ N

)
dσdθ,

and n = 1
2

(
1 + 2k H

sinh(2k H)

)
. The action balance equation represents the rate of change of

action density in time, the propagation of action density through geographic space with
propagation velocity cx and cy , and the propagation of action density through spectral space,
which represents frequency shifting due to changes in depth and current with propagation
velocity cσ and depth- and current-induced refraction with propagation velocity cθ . The
propagation velocities c = (cx , cσ , cθ ) in their simplified, one geographic dimensional form
are [13]

cx = cg cos(θ) + u, (4)

cσ = kσ

sinh(2k H)
(Ht + u∇x H) − cgk∇x u cos2 θ, (5)

cθ = σ

sinh(2k H)
∇x H sin θ + ∇x u cos θ sin θ, (6)

where cg = nc is the group velocity, c = σ/k is the phase speed, and k is the wave
number, which is related to the frequency via the dispersion relationship σ 2 = gk tanh(k H).
The source term, S, accounts for wind input, Sin , dissipation, Sd , and nonlinear wave-wave
interactions, Snl . We omit the details of the source term, but note that it can be written as

S

σ
= Sin + Sd + Snl = ( fS(H) + gS(N ))N

where fS is Lipschitz continuous and gS , which can depend on integral values of the action
density, is also Lipschitz continuous. For the full two-dimensional system of equations,
derivatives over geographic space are taken over both x and y and the full two-dimensional
radiation stress tensor is used.

For the error analysis only, we will consider the deep water assumption of H � 0 and
thus tanh(k H) ≈ 1. This deep water assumption allows for the simplification of the group
velocity as cg = g/σ, n = 1/2, and the dispersion relationship becomes σ = √

gk. When
the deep water assumption is valid, the group velocity no longer depends on the depth of the
water. To explore this, we plot in Fig. 1 the group velocity for a range of depths for several
different frequencies. When the frequency is 0.03 Hz, the group velocity slows its dependence
on depth around H = 800 m. However, for the higher frequencies of 0.1 and 1.0 Hz we see
that the group velocity no longer depends on depth for depths larger than 155 and 1.6 m,
respectively. Therefore if lower frequencies are included in the domain then we must restrict
ourselves in the analysis to water depths larger than 800 m for the deep water assumption to
be valid, but we can consider shallower water if we only consider higher frequencies. We
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Fig. 1 The group velocity for different depths for several frequencies

also need for the horizontal length scale to be much larger than the vertical length scale, so
that the shallow water equations are valid. For the error analysis, we rewrite the propagation
velocities using the continuity equation in the expression for cσ and by approximating the
derivative of the total water depth by the derivative of the bathymetry in the expression for
cθ and obtain

cσ = kσ

sinh(2k H)
(−H∇x u) − cgk∇x u cos2 θ, (7)

cθ = σ

sinh(2k H)
∇x hb sin θ + ∇x u cos θ sin θ. (8)

For the analysis, we also approximate the total water depth by the bathymetry in the forcing
function so that

Fx = τsx,wave

ρhb
. (9)

For the shallow water equations, we consider the geographic boundary to be divided into
an inflow and outflow region ∂Ξ = ∂Ξin ∪ ∂Ξout , where

∂Ξin = {x ∈ ∂Ξ : u · nx < 0},
∂Ξout = {x ∈ ∂Ξ : u · nx ≥ 0},

with the following boundary conditions

u(x, t) = û(x, t), ∂Ξ,

ξ(x, t) = ξ̂ (x, t), ∂Ξin .

For the action balance equation, we consider the entire boundary to be divided into an inflow
and outflow region ∂Ω = ∂Ωin ∪ ∂Ωout , where

∂Ωin = {(x, σ, θ) ∈ ∂Ω : c · n < 0},
∂Ωout = {(x, σ, θ) ∈ ∂Ω : c · n ≥ 0},

123



J Sci Comput (2014) 59:334–370 339

with the following boundary condition

N (x, σ, θ, t) = N̂ (x, σ, θ, t), ∂Ωin .

2.1 Notation and Definitions

Let {Th}h>0 be a family of regular finite element partitions of Ω such that no single element
Ωe = Ξg × κs crosses the boundary ∂Ω and Th is locally quasi-uniform [2]. We assume
each element Ωe and Ξg is Lipschitz and affinely equivalent to a reference element [2]. Let
hg be the diameter of an element Ξg , he be the diameter of an element Ωe, and h be the
maximum element diameter.

For any v ∈ H1(Ξg), for each element Ξg , we denote the trace v± on the interior faces
of Ξg, γi , by

v−(x) = lim
s→0− v(x + sni ), v+(x) = lim

s→0+ v(x + sni ),

where x ∈ γi and ni is a fixed unit vector normal to γi . Similarly for any w ∈ H1(Ωe), for
each element Ωe, we denote the trace w± on the interior edges of Ωe, λ j , by

w−(x) = lim
s→0− w(x + sn j ), w+(x) = lim

s→0+ w(x + sn j ),

where x = (x, σ, θ) ∈ λ j and n j is a fixed unit vector normal to λ j . We then define the
average and jump of a function v over a geographic element face γi as

{v} = 1

2
(v+ + v−), [v] = v− − v+,

and respectively, the average and jump of a function w over an element edge λ j as

{w} = 1

2
(w+ + w−), [w] = w− − w+.

We denote the sum over all elements in Ξ as
∑

Ξg⊂Ξ , the sum over all elements in the entire
domain as

∑
Ωe⊂Ω , the sum over all the geographic interior edges as

∑
γi ∈ΓΞ

, and the sum
over all interior faces as

∑
λ j ∈ΓΩ

.

We use the L2(R) inner product notation (·, ·)R for the interior of a domain R ∈ R
d , d =

1, 2, 3, and the notation 〈·, ·〉 for the inner product over the edges or faces. Denote by || · ||R

the L2 norm on region R and note that for a function f ∈ L2(Ξg) or g ∈ L2(Ωe) that

|| f ||Ξ =
∑

Ξg⊂Ξ

|| f ||Ξg , ||g||Ω =
∑

Ωe⊂Ω

||g||Ωe .

Let norms in other Sobolev spaces W (R) be denoted || · ||W (R) and for a time dependent
function f = f (x, t)

|| f ||L∞(0,T ;W (R)) = ess sup
0≤t≤T

|| f (·, t)||W (R).

3 Weak Formulations

Both the continuity equation and action balance equation will be discretized via a discontin-
uous Galerkin (DG) method. The momentum equation will be discretized via the nonsym-
metric interior penalty Galerkin (NIPG) method with the upwinding technique of Lesaint
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and Raviart [18] applied to the advection term. We proceed by multiplying the continuity
and momentum equations by test functions ν ∈ H1(Ξg) and v ∈ H1(Ξg) on each geo-
graphic element Ξg ⊂ Ξ , integrate by parts and sum over each equation’s results to obtain
the weak formulations. Similarly, we multiply the action balance equation by a test function
w ∈ H1(Ωe) on each element Ωe ⊂ Ω , integrate by parts and sum over the results to obtain
the weak formulation. The system then contains the weak form of the continuity equation

(ξt , ν)Ξ − (u H,∇xν)Ξ +
∑

γi ∈ΓΞ

〈Hu · ni , [ν]〉γi + 〈Hû · nx , ν〉∂Ξout

= −〈Ĥ û · nx , ν〉∂Ξin , (10)

where Ĥ = ξ̂ + h, the momentum equation

(ut , v)Ξ + (u · ∇x u, v)Ξ + (g∇xξ, v)Ξ + μ(∇x u,∇xv)Ξ

−
∑

γi ∈ΓΞ

μ〈∇x u · ni , [v]〉γi − μ〈∇x u · nx , v〉∂Ξ = (Fx , v)Ξ , (11)

and the action balance equation

(Nt , w)Ω − (cN ,∇w)Ω +
∑

λ j ∈ΓΩ

〈cN · n j , [w]〉λ j

+〈cN · n, w〉∂Ωout =
(

S

σ
,w

)

Ω

− 〈cN̂ · n, w〉∂Ωin . (12)

3.1 Approximation Spaces

We define the following two approximation spaces that allow for discontinuities along the
edges of elements

Vh = {v ∈ L2(Ξ) : v|Ξg ∈ P p(Ξg) ∀Ξg},
Wh = {w ∈ L2(Ω) : w|Ωe ∈ P p(Ξg) ∗ Pq(κs) ∀Ωe},

where P p is the space of polynomials of degree p defined on the geographic element Ξg and
Pq is the space of polynomials of degree q defined on the spectral element κs .

3.2 Discrete Weak Formulations

We begin by approximating the initial conditions with L2 projections, computing ξh(·, 0),
uh(·, 0) ∈ Vh(Ξ) and Nh(·, 0) ∈ Wh(Ω) to satisfy

(ξ0 − ξh(·, 0), ν) = 0, ν ∈ Vh(Ξ),

(u0 − uh(·, 0), v) = 0, v ∈ Vh(Ξ),

(N0 − Nh(·, 0), w) = 0, w ∈ Wh(Ω).

We must slightly alter the definition of ∂Ξin and ∂Ξout to correspond with uh · nx < 0 and
uh ·nx ≥ 0 and the definitions of ∂Ωin and ∂Ωout to correspond with ch ·n < 0 and ch ·n ≥ 0.
The free surface elevation ξ is approximated by ξh ∈ Vh which satisfies the discrete weak
form of the continuity equation

((ξh)t , ν)Ξ − (uh Hh,∇xν)Ξ +
∑

γi ∈ΓΞ

〈H↑
h {uh} · ni , [ν]〉γi

+〈Hhuh · nx , ν〉∂Ξout = −〈Ĥuh · nx , ν〉∂Ξin , (13)
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where Hh = ξh + hb and the upwind value of Hh on each geographic interior edge γi is
defined as

H↑
h =

{
H−

h if {uh} · ni > 0,

H+
h if {uh} · ni ≤ 0.

(14)

For the momentum equation, we add three stability terms involving [uh], [ξh] and [Sxx,h]
which are zero for the true solutions. The depth-integrated velocity u is approximated by
uh ∈ Vh which satisfies the discrete weak form

((uh)t , v)Ξ + (uh · ∇x uh, v)Ξ +
∑

g

〈|{uh} · ne|(uint
h − uext

h ), vint 〉∂Ξ−
g

+(g∇xξh, v)Ξ −
∑

γi ∈ΓΞ

〈g[ξh], {v} · ni 〉γi − 〈g(ξh − ξ̂ ), v · nx 〉∂Ξin

+μ(∇x uh,∇xv)Ξ −
∑

γi ∈ΓΞ

μ〈{∇x uh} · ni , [v]〉γi

+
∑

γi ∈ΓΞ

μ〈{∇xv} · ni , [uh]〉γi +
∑

γi ∈ΓΞ

〈α[uh], [v]〉γi

−μ〈∇uh · nx , v〉∂Ξ − 〈α(uh − û), v〉∂Ξ

+μ〈∇v · nx , uh − û〉∂Ξ = (
Fx,h, v

) +
∑

γi ∈ΓΞ

〈[Sxx,h], v〉γi , (15)

where α is a positive parameter which will be further discussed later. ∂Ξ−
g = {x ∈ ∂Ξg :

{uh} · nx < 0}, vint and vext are the traces of v from the interior and exterior of ∂Ξg , and
when the edge of element Ξg belongs to the geographic boundary ∂Ξ , the exterior trace value
uext

h = û. The action density N is approximated by Nh ∈ Wh , which fulfills the discrete
weak form of the action balance equation

((Nh)t , w)Ω − (ch Nh,∇w)Ω +
∑

λ j ∈ΓΩ

〈N↑
h {ch} · n j , [w]〉λ j

+〈ch Nh · n, w〉∂Ωout =
(

Sh

σ
,wh

)

Ω

− 〈ch N̂ · n, w〉∂Ωin , (16)

where the upwind value of Nh on each interior edge λ j is defined as

N↑
h =

{
N−

h if {ch} · n j > 0,

N+
h if {ch} · n j ≤ 0.

(17)

4 Error Equations

We now perform an a priori error analysis of the coupled system (1)–(3). To form the error
equations we first must define the L2 projections ξ̃h , ũh and Ñh into the approximation spaces
for ξh , uh and Nh such that for time t ≥ 0

(
(ξ̃h − ξ)(·, t), v

) = 0 v ∈ Vh,
(
(ũh − u)(·, t), ν

) = 0 ν ∈ Vh,
(
(Ñh − N )(·, t), w

) = 0 v ∈ Wh .
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Define

eξ = ξh − ξ̃h, Θξ = ξ − ξ̃h,

with similar definitions for eu,Θu, eN and ΘN . Let H̃h = ξ̃h + hb and note eξ = Hh − H̃h .
We now perform manipulations to the weak forms to obtain the error equations, many

of these arguments are repeated from Dawson and Proft [5]. We begin with the continuity
equation by subtracting the weak form (10) from the discrete weak form (13) and setting
v = eξ to obtain

((eξ )t , eξ )Ξ − (uheξ ,∇x eξ )Ξ +
∑

γi ∈ΓΞ

〈e↑
ξ {uh} · ni , [eξ ]〉γi + 〈eξ uh · nx , eξ 〉∂Ξout

= ((Θξ )t , eξ )Ξ − (u H − uh H̃h,∇x eξ )Ξ +
∑

γi ∈ΓΞ

〈(u H − {uh}H̃↑
h

) · ni , [eξ ]〉γi

+〈(û H − uh H̃h
) · nx , eξ 〉∂Ξout + 〈̂u Ĥ − uh Ĥ) · nx , eξ 〉∂Ξin . (18)

We then integrate by parts

−(uheξ ,∇x eξ )Ξ +
∑

γi ∈ΓΞ

〈e↑
ξ {uh} · ni , [eξ ]〉γi + 〈eξ uh · nx , eξ 〉∂Ξout

= 1

2

(∇x · uh, e2
ξ

)
Ξ

− 1

2

∑

γi ∈ΓΞ

〈[uhe2
ξ · ni ], 1〉γi

+
∑

γi ∈ΓΞ

〈e↑
ξ {uh} · ni , [eξ ]〉γi + 1

2
〈|uh · nx |, e2

ξ 〉∂Ξin + 1

2
〈|uh · nx |, e2

ξ 〉∂Ξout .

Use the fact that [ab] = {a}[b] + [a]{b}, 1
2 [a2] = [a]{a} and the definition of e↑

ξ to get

−1

2

∑

γi ∈ΓΞ

〈[uhe2
ξ · ni ], 1〉γi +

∑

γi ∈ΓΞ

〈e↑
ξ {uh} · ni , [eξ ]〉γi

=
∑

γi ∈ΓΞ

〈e↑
ξ [eξ ]{uh} · ni − 1

2
[e2

ξ ]{uh} · ni − 1

2
{e2

ξ }[uh] · ni , 1〉γi

=
∑

γi ∈ΓΞ

〈(e↑
ξ − {eξ }){uh} · ni , [eξ ]〉γi − 1

2

∑

γi ∈ΓΞ

〈{e2
ξ }, [uh] · ni 〉γi

= 1

2

∑

γi ∈ΓΞ

〈|{uh} · ni |, [eξ ]2〉γi − 1

2

∑

γi ∈ΓΞ

〈{e2
ξ }, [uh] · ni 〉γi .

Then integrating −(u H − uh H̃h,∇x eξ )Ξ by parts we have

−(u H − uh H̃h,∇x eξ )Ξ + 〈(̂u Ĥ − uh Ĥ) · nx , eξ 〉∂Ξin + 〈(̂u H − uh H̃h) · nx , eξ 〉∂Ξout

= (∇x · (u H − uh H̃h), eξ )Ξ

−
∑

γi ∈ΓΞ

〈[eξ (u H − uh H̃h) · ni ], 1〉γi + 〈(uh H̃h − uh Ĥ) · nx , eξ 〉∂Ξin .
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The continuity error equation is then

((eξ )t , eξ )Ξ + 1

2

(∇x · uh, e2
ξ

)
Ξ

+ 1

2

∑

γi ∈ΓΞ

〈|{uh} · ni |, [eξ ]2〉γi

−1

2

∑

γi ∈ΓΞ

〈{e2
ξ }, [uh] · ni 〉γi + 1

2
〈|uh · n|, e2

ξ 〉∂Ξin + 1

2
〈|uh · n|, e2

ξ 〉∂Ξout

= ((Θξ )t , eξ )Ξ + (∇x · (u H − uh H̃h), eξ )Ξ +
∑

γi ∈ΓΞ

〈(u H − {uh}H̃↑
h ) · ni , [eξ ]〉γi

−
∑

γi ∈ΓΞ

〈[eξ (u H − uh H̃h) · ni ], 1〉γi + 〈(uh H̃h − uh Ĥ) · nx , eξ 〉∂Ξin . (19)

We proceed with the momentum equation, subtract the weak form (11) from the discrete
weak form (15) and let v = eu to obtain

((eu)t , eu)Ξ + (g∇x eξ , eu)Ξ −
∑

γi ∈ΓΞ

〈g[eξ ], {eu} · ni 〉γi − 〈geξ , eu · nx 〉∂Ξin

+μ(∇x eu,∇x eu)Ξ +
∑

γi ∈ΓΞ

〈α[eu], [eu]〉γi + 〈αeu, eu〉∂Ξ

= ((Θu)t , eu)Ξ + (u · ∇x u − uh · ∇x uh, eu)Ξ

−
∑

g

〈|{uh} · ne|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
+ (g∇xΘξ , eu)Ξ

−
∑

γi ∈ΓΞ

〈g[Θξ ], {eu} · ni 〉γi − 〈gΘξ , eu · nx 〉∂Ξin + μ(∇xΘu,∇x eu)Ξ

+
∑

γi ∈ΓΞ

〈α[Θu], [eu]〉γi −
∑

γi ∈ΓΞ

〈μ{∇xΘu} · ni , [eu]〉γi

+
∑

γi ∈ΓΞ

〈μ{∇x eu} · ni , [Θu]〉γi − μ〈∇xΘu · nx , eu〉∂Ξ + μ〈∇x eu · nx ,Θu〉∂Ξ

+〈αΘu, eu〉∂Ξ + (
Fx,h − Fx , eu

)
Ξ

+
∑

γi ∈ΓΞ

〈[Sxx,h − Sxx ], {eu}〉γi . (20)

Integrating (g∇x eξ , eu)Ξ by parts we get

(g∇x eξ , eu)Ξ −
∑

γi ∈ΓΞ

〈g[eξ ], {eu} · ni 〉γi − 〈geξ , eu · nx 〉∂Ξin

= −(geξ ,∇x · eu)Ξ +
∑

γi ∈ΓΞ

〈g{eξ }, [eu] · ni 〉γi + 〈geξ , eu · nx 〉∂Ξout .

The momentum error equation then becomes

((eu)t , eu)Ξ − (geξ ,∇x · eu)Ξ +
∑

γi ∈ΓΞ

〈g{eξ }, [eu] · ni 〉γi + 〈geξ , eu · nx 〉∂Ξout

+μ(∇x eu,∇x eu)Ξ +
∑

γi ∈ΓΞ

〈α[eu], [eu]〉γi + 〈αeu, eu〉∂Ξ

= ((Θu)t , eu)Ξ + (u · ∇x u − uh · ∇x uh, eu)Ξ

−
∑

g

〈|{uh} · ne|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
+ (g∇xΘξ , eu)Ξ
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−
∑

γi ∈ΓΞ

〈g[Θξ ], {eu} · ni 〉γi − 〈gΘξ , eu · nx 〉∂Ξin + μ(∇xΘu,∇x eu)Ξ

+
∑

γi ∈ΓΞ

〈α[Θu], [eu]〉γi −
∑

γi ∈ΓΞ

〈μ{∇xΘu} · ni , [eu]〉γi

+
∑

γi ∈ΓΞ

〈μ{∇x eu} · ni , [Θu]〉γi − μ〈∇xΘu · nx , eu〉∂Ξ + μ〈∇x eu · n,Θu〉∂Ξ

+〈αΘu, eu〉∂Ξ + (
Fx,h − Fx , eu

)
Ξ

+
∑

γi ∈ΓΞ

〈[Sxx,h − Sxx ], {eu}〉γi . (21)

Finally, we note that the action balance equation contains analogous terms to the continuity
equation. Therefore, performing the same manipulations as before, we obtain action balance
error equation

((eN )t , eN )Ω + 1

2

(∇ · ch, e2
N

)
Ω

+ 1

2

∑

λ j ∈ΓΩ

〈|{ch} · n|, [eN ]2〉λ j

−1

2

∑

λ j ∈ΓΩ

〈{e2
N }, [ch] · n〉λ j + 1

2
〈|ch · n|, e2

N 〉∂Ωout + 1

2
〈|ch · n|, e2

N 〉∂Ωin

= ((ΘN )t , eN )Ω + (∇ · (cN − ch Ñh), eN
)
Ω

−
∑

λ j ∈ΓΩ

〈[eN (cN − ch Ñh) · n j ], 1〉λ j

+
∑

λ j ∈ΓΩ

〈cN − Ñ↑
h {ch} · n, [eN ]〉λ j + 〈(ch Ñh − ch N̂ ) · n, eN 〉∂Ωin

+
(

Sh − S

σ
, eN

)

Ω

. (22)

Combine (19), (21) and (22), rearrange terms and use the definition of the L2 projection to
obtain

((eξ )t , eξ )Ξ + ((eu)t , eu)Ξ + ((eN )t , eN )Ω + ||μ1/2∇x eu ||2Ξ
+1

2

∑

γi ∈ΓΞ

〈|{uh} · ni |, [eξ ]2〉γi + 1

2
〈|uh · nx |, e2

ξ 〉∂Ξin + 1

2
〈|uh · nx |, e2

ξ 〉∂Ξout

+
∑

γi ∈ΓΞ

||α1/2[eu]||2γi
+ ||α1/2eu ||2∂Ξ + 1

2

∑

λ j ∈ΓΩ

〈|{ch} · n j |, [eN ]2〉λ j

+1

2
〈|ch · n j |, e2

N 〉∂Ωout + 1

2
〈|ch · n|, e2

N 〉∂Ωin

= −1

2
(∇x · uh, e2

ξ )Ξ + (∇x · (u H − uh H̃h), eξ )Ξ + (g∇xΘξ , eu)Ξ + (geξ ,∇x · eu)Ξ

+μ(∇xΘu,∇x eu)Ξ + (u · ∇x u − uh · ∇x uh, eu)Ξ −
∑

γi ∈ΓΞ

〈g[Θξ ], {eu} · ni 〉γi

−〈gΘξ , eu · nx 〉∂Ξin −
∑

γi ∈ΓΞ

〈g{eξ }, [eu] · ni 〉γi − 〈geξ , eu · nx 〉∂Ξout

+1

2

∑

γi ∈ΓΞ

〈{e2
ξ }, [uh] · ni 〉γi −

∑

γi ∈ΓΞ

〈[eξ (u H − uh H̃h) · ni ], 1〉γi
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+
∑

γi ∈ΓΞ

〈(u H − {uh}H̃↑
h ) · ni , [eξ ]〉γi + 〈(uh H̃h − uh Ĥ) · nx , eξ 〉∂Ξin

−
∑

g

〈|{uh} · ne|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
−

∑

γi ∈ΓΞ

〈μ{∇xΘu} · ni , [eu]〉γi

+
∑

γi ∈ΓΞ

〈μ{∇x eu} · ni , [Θu]〉γi +
∑

γi ∈ΓΞ

〈α[Θu], [eu]〉γi + 〈αΘu, eu〉∂Ξ

−μ〈∇xΘu · nx , eu〉∂Ξ + μ〈∇x eu · nx ,Θu〉∂Ξ + (
Fx,h − Fx , eu

)
Ξ

+
∑

γi ∈ΓΞ

〈[Sxx,h − Sxx ], {eu}〉γi − 1

2

(∇ · ch, e2
N

)
Ω

+ 1

2

∑

λ j ∈ΓΩ

〈{e2
N }, [ch] · n j 〉λ j

+ (∇ · (cN − ch Ñh), eN
)
Ω

−
∑

λ j ∈ΓΩ

〈[eN (cN − ch Ñh) · n j ], 1〉λ j

+
∑

λ j ∈ΓΩ

〈cN − Ñ↑
h {ch} · n j , [eN ]〉λ j + 〈(ch Ñh − ch N̂ ) · n, eN 〉∂Ωin

+
(

Sh − S

σ
, eN

)

Ω

. (23)

Integrate the previous equation in time and use the fact that eξ (·, 0) = 0, eu(·, 0) = 0, and
eN (·, 0) = 0, and we obtain the error equation

||eξ (T )||2Ξ + ||eu(T )||2Ξ + ||eN (T )||2Ω + 2

T∫

0

||μ1/2∇x eu ||2Ξ dt

+
T∫

0

∑

γi ∈ΓΞ

〈|{uh} · ni |, [eξ ]2〉γi dt +
T∫

0

〈|uh · nx |, e2
ξ 〉∂Ξin dt

+
T∫

0

〈|uh · nx |, e2
ξ 〉∂Ξout dt + 2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt

+2

T∫

0

||α1/2eu ||2∂Ξ dt +
T∫

0

∑

λ j ∈ΓΩ

〈|{ch} · n j |, [eN ]2〉λ j dt

+
T∫

0

〈|ch · n|, e2
N 〉∂Ωout dt +

T∫

0

〈|ch · n|, e2
N 〉∂Ωin dt = 2

30∑

k=1

Ek . (24)

5 Error Analysis

We will need the following theorems and identities to perform the error analysis. The fol-
lowing well known theorem [2] will frequently be used:

Theorem 1 Suppose that region R has a Lipschitz boundary. Then, there exists a constant
K t

R such that

||v||L2(∂ R) ≤ K t
R ||v||1/2

L2(R)
||v||1/2

H1(R)
∀v ∈ H1(R). (25)
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Let K t
Ω = suph maxΩe∈Ω K t

Ωe
and K t

Ξ = suph maxΞg∈Ξ K t
Ξg

, which can be shown to

be finite for regular meshes. We define the trace constant K t = max(K t
Ω, K t

Ξ). We will need
the inverse inequality in which for any functions v ∈ Vh and w ∈ Wh

||v||H1(Ξg) ≤ K i
Ξg

h−1
g ||v||Ξg , (26)

and

||w||H1(Ωe)
≤ K i

Ωe
h−1

e ||w||Ωe , (27)

where K i
R is independent of hg, he but depends on the shape parameters of region R. Let

K i = maxe,g(K i
Ωe

, K i
Ξg

). When the Cauchy-Schwarz inequality is applied to the L2 product
over the domain Ω when one of the functions is only a function of geographic space, we
obtain a factor, K k , of the size of the spectral domain such that

|κ| ≤ 2πσmax ≤ K k . (28)

In keeping with the deep water assumption we assume H∗ > H, Hh, H̃h > H∗ > 0 and that
there is a constant K c such that

||hb||L∞(0,T ;W∞
1 (Ξ)) + ||cg||L∞(0,T ;W∞

1 (Ω)) + ||k||L∞(0,T ;W∞
1 (Ω))

+
∣∣∣
∣∣∣

σ

sinh 2k H

∣∣∣
∣∣∣
L∞(0,T ;L∞(Ω))

+
∣∣∣∣

∣∣∣∣∇σ

(
σk H

sinh 2k H

)∣∣∣∣

∣∣∣∣
L∞(0,T ;L∞(Ω))

+
∣∣∣∣

∣∣∣∣
σ

sinh 2k Hh

∣∣∣∣

∣∣∣∣
L∞(0,T ;L∞(Ω))

+
∣∣∣∣

∣∣∣∣∇σ

(
σk Hh

sinh 2k Hh

)∣∣∣∣

∣∣∣∣
L∞(0,T ;L∞(Ω))

≤ K c. (29)

We make the following assumption on the solutions and the projections

||H ||L∞(0,T ;W∞
1 (Ξ)) + ||u||L∞(0,T ;W∞

1 (Ξ)) + ||N ||L∞(0,T ;W∞
1 (Ω))

+||H̃h ||L∞(0,T ;W∞
1 (Ξ)) + ||ũh ||L∞(0,T ;W∞

1 (Ξ)) + ||Ñh ||L∞(0,T ;W∞
1 (Ω)) ≤ K m . (30)

We also assume that there exists a finite constant K M ≥ 2K m and independent of h such that

||eξ ||L∞(0,T ;L∞(Ξ)) + ||eu ||L∞(0,T ;L∞(Ξ)) + ||eN ||L∞(0,T ;L∞(Ω)) ≤ K M . (31)

For the analysis, we will need Young’s inequality

ab ≤ ε

2
a2 + 1

2ε
b2. (32)

We use the basic principles of the following generic arguments throughout the analysis.
For functions f, g and ω over region R (which could be either Ω or Ξ ), we have that

(g f − gh fh, ω)R = (g( f − fh) − (g − gh) fh, ω)R

= (g(θ f − e f ) − (θg − eg) fh, ω)R

≤ C ||g||L∞(R)(||θ f ||R + ||e f ||R + ||ω||R)

+C || fh ||L∞(R)(||θg||R + ||eg||R + ||ω||R), (33)

123



J Sci Comput (2014) 59:334–370 347

and, similarly,

(∇x (g f − gh fh), ω)R = (∇x (g( f − fh) − (g − gh) fh), ω)R

= (∇x g(θ f − e f ) + g∇x (θ f − e f ), ω)R

−(∇x (θg − eg) fh − (θg − eg)∇x fh, ω)R

≤ ||g||L∞(R)(||∇xθ f ||R + ||∇x e f ||R + ||ω||R)

+C ||∇x g||L∞(R)(||θ f ||R + ||e f ||R + ||ω||R)

+C || fh ||L∞(R)(||∇xθg||R + ||∇x eg||R + ||ω||R)

+C ||∇x fh ||L∞(R)(||θg||R + ||eg||R + ||ω||R). (34)

Before we continue with arguments over boundaries, we introduce some notation. Let Ei =
{Ξg : ∂Ξg ∩ γi �= ∅} for each edge γi and E j = {Ωe : ∂Ωe ∩ λ j �= ∅} for each face λ j .
Below, C denotes a positive generic constant, C(K ∗) denotes that C depends on K ∗, and
let εi , i = 1, 2, 3, 4, be a small generic constant. In the first argument, over the boundary of
region R, we use Theorem 1 as well as the inverse and Young’s inequalities to obtain

〈 f, g〉∂ R ≤ K t || f ||1/2
R || f ||1/2

H1(R)
||g||1/2

R ||g||1/2
H1(R)

≤ K t K i h−1/2|| f ||1/2
R || f ||1/2

H1(R)
||g||R

≤ C(K t , K i )h−1|| f ||R || f ||H1(R) + ε||g||2R
≤ C(K t , K i )(h−2|| f ||2R + || f ||2H1(R)

) + ε||g||2R, (35)

for g ∈ Vh or Wh . In the second argument, we utilize the positive constant α. We assume
that αi,∗, α∗

i are positive parameters such that

αi,∗ ≤ α|γi ≤ α∗
i , αi,∗, α∗

i = O
(
h−1

i

)
, (36)

where

hi = minΞg⊂Ei hg.

Then, using α, Theorem 1, and Young’s inequality we find

〈 f, g〉∂ R ≤ ||α−1/2 f ||∂ R ||α1/2g||∂ R

≤ K tα
−1/2
R,∗ || f ||1/2

R || f ||1/2
H1(R)

||α1/2g||∂ R

≤ C(K t )h R || f ||R || f ||H1(R) + ε||α1/2g||2∂ R (37)

≤ C(K t , K i )|| f ||2R + ε||α1/2g||2∂ R, (38)

where one can stop at (37) or apply the inverse inequality if f ∈ Vh or Wh and obtain (38).
We now continue by estimating the terms on the right hand side of (24), which repeats

many arguments from Dawson and Proft [5]. Some of the same arguments are used in the
analysis of the action balance equation. By assumptions (30) and (31) we find
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E1 = −1

2

T∫

0

(∇x · uh, e2
ξ

)
Ξ

dt

= −1

2

T∫

0

(∇x · (eu − Θu + u), e2
ξ

)
Ξ

dt

≤ ε1

T∫

0

||∇x eu ||2Ξ dt + C(K M )

T∫

0

||∇xΘu ||2Ξ dt + C
(
K m, K M)

T∫

0

||eξ ||2Ξ dt. (39)

Again by assumptions (30) and (31) and following the arguments in (34), we have

E2 =
T∫

0

(∇x · (u H − uh H̃h), eξ )Ξ dt

≤ C
(
K m, K M)

T∫

0

||Θu ||2H1(Ξ)
dt + C

(
K m, K M)

T∫

0

||Θξ ||2H1(Ξ)
dt

+ε1

T∫

0

||∇x eu ||2Ξ dt + C
(
K m, K M)

T∫

0

||eξ ||2Ξ dt. (40)

Using Young’s inequality, we find

E3 + E4 + E5 =
T∫

0

(g∇xΘξ , eu)Ξ dt +
T∫

0

(geξ ,∇x · eu)Ξ dt

+
T∫

0

μ(∇xΘu,∇x eu)Ξ dt

≤ C

T∫

0

||∇xΘξ ||2Ξ dt + C

T∫

0

||eu ||2Ξ dt + C

T∫

0

||eξ ||2Ξ dt

+ε1

T∫

0

||∇x eu ||2Ξ dt + C

T∫

0

||∇xΘu ||2Ξ dt. (41)

Following the argument in (34), we get

E6 =
T∫

0

(u · ∇x u − uh · ∇x uh, eu)Ξ dt

≤ C(K m)

T∫

0

||Θu ||2Ξ dt + C
(
K m, K M)

T∫

0

(||eu ||2Ξ + ||∇xΘu ||2Ξ
)
dt

+ε1

T∫

0

||∇x eu ||2Ξ dt. (42)
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For E7, apply the argument in (35) to obtain

E7 =
T∫

0

∑

γi ∈ΓΞ

〈g[Θξ ], {eu} · ni 〉γi dt

≤ C(K t , K i )

T∫

0

∑

Ξg⊂Ξ

[
h−2

g ||Θξ ||2Ξg
+ ||Θξ ||2H1(Ξg)

]
dt + C

T∫

0

||eu ||2Ξ dt, (43)

with a similar bound for E8. Employing the argument in (38) we have

E9 = −
T∫

0

∑

γi ∈ΓΞ

〈g{eξ }, [eu] · ni 〉γi dt

≤ C
(
K t , K i )

T∫

0

||eξ ||2Ξ dt + ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt, (44)

and an analogous bound for E10. Following the strategies in (35) and (38) coupled with the
fact that [u] = 0 on γi , we have

E11 = −1

2

T∫

0

∑

γi ∈ΓΞ

〈{e2
ξ }, [uh] · ni 〉γi dt

= 1

2

T∫

0

∑

γi ∈Γint

〈{e2
ξ }, ([eu] − [Θu]) · ni 〉γi dt

≤ ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt + C(K t )

T∫

0

∑

Ξg⊂Ξ

(
h−2

g ||Θu ||2Ξg
+ ||Θu ||2H1(Ξg)

)
dt

+C
(
K M , K t , K i )

T∫

0

||eξ ||2Ξ dt. (45)

Use {ab} = {a}{b} + 1
4 [a][b] and [ab] = {a}[b] + [a]{b} to obtain

E12 + E13 = −
T∫

0

∑

γi ∈ΓΞ

〈[eξ (u H − uh H̃h) · ni ], 1〉γi dt

+
T∫

0

∑

γi ∈ΓΞ

〈(u H − {uh}H̃↑
h ) · ni , [eξ ]〉γi dt
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=
T∫

0

∑

γi ∈ΓΞ

〈
(
Θ

↑
ξ − {Θξ }

)
{uh} · ni − 1

4
[Θξ ][uh] · ni , [eξ ]〉γi dt

+
T∫

0

∑

γi ∈ΓΞ

〈{H̃h} ([eu] − [Θu]) · ni − [Θξ ]{uh} · ni , {eξ }〉γi dt.

We then use (35) to obtain

T∫

0

∑

γi ∈ΓΞ

〈(
Θ

↑
ξ − {Θξ }

){uh} · ni , [eξ ]
〉
γi

dt

≤ C
(
K m, K M , K t )

T∫

0

∑

Ξg⊂Ξ

(
h−2

g ||Θξ ||2Ξ + ||Θξ ||2H1(Ξ)

)
dt

+C
(
K m, K M , K t , K i )

T∫

0

||eξ ||2Ξ dt, (46)

with similar bounds for the two terms with [Θξ ] and a nearly identical bound to E11 for the

remaining term
∫ T

0

∑
γi ∈ΓΞ

〈{H̃h} ([eu] − [Θu]) · ni , {eξ }〉γi dt . Applying the Theorem 1 and
(32) we have

E14 =
T∫

0

〈(uh H̃h − uh Ĥ) · nx , eξ 〉∂Ξin dt

≤ C
(
K m, K M)

T∫

0

||Θξ ||2∂Ξin
dt + ε3

T∫

0

〈|uh · nx |, e2
ξ 〉∂Ξin dt

≤ C
(
K m, K M , K t)

T∫

0

(||Θξ ||2Ξ + ||Θξ ||2H1(Ξ)

)
dt + ε3

T∫

0

〈|uh · nx |, e2
ξ 〉∂Ξin dt. (47)

For E15, use arguments (35) and (38) so that

E15 = −
T∫

0

∑

g

〈|{uh} · ng|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
dt

≤
T∫

0

∑

g

〈|({eu} + {̃uh}) · ng||[Θu] − [eu]|, |eint
u |〉∂Ξ−

g
dt

≤ C(K m, K M , K t , K i )

T∫

0

||eu ||2Ξ dt + ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt

+C(K t )

T∫

0

∑

Ξg∈Ξ

(
h−2

g ||Θu ||2Ξ + ||Θu ||2H1(Ξ)

)
dt + ε4

T∫

0

||α1/2eu ||2∂Ξ dt, (48)
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and use (37) to find

E16 = −
T∫

0

∑

γi ∈ΓΞ

〈μ{∇xΘu} · ni , [eu]〉γi dt

≤ C(K t )

T∫

0

∑

Ξg⊂Ξ

hg||∇xΘu ||Ξg ||∇xΘu ||H1(Ξg)dt + ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt.

(49)

Similarly, (35) gives us that

E17 =
T∫

0

∑

γi ∈ΓΞ

〈μ{∇x eu} · ni , [Θu]〉γi dt

≤ ε1

T∫

0

||∇x eu ||2Ξg
dt + C(K t , K i )

T∫

0

∑

Ξg⊂Ξ

(h−2
g ||Θu ||2Ξg

+ ||Θu ||2H1(Ξg)
)dt.

(50)

Simply using Theorem 1, (26), and (36) we get

E18 + E19 =
T∫

0

∑

γi ∈ΓΞ

〈α[Θu], [eu]〉γi dt +
T∫

0

〈αΘu, eu〉∂Ξ dt

≤ C

T∫

0

( ∑

γi ∈ΓΞ

||α1/2[Θu]||2γi
+ ||α1/2[Θu]||2∂Ξ

)
dt

+ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt + ε4

T∫

0

||α1/2eu ||2∂Ξ dt

≤ C(K t )

T∫

0

∑

Ξg⊂Ξ

(
h−2

g ||Θu ||2Ξg
+ ||Θu ||2H1(Ξg)

)
dt

+ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt + ε4

T∫

0

||α1/2eu ||2∂Ξ dt, (51)

and using (35) and (38) we have

E20 + E21 = −
T∫

0

〈μ∇xΘu · n, eu〉∂Ξ dt +
T∫

0

〈μ∇x eu · n,Θu〉∂Ξ dt

≤ ε1

T∫

0

||∇x eu ||2Ξg
dt + ε4

T∫

0

||α1/2eu ||2∂Ξ dt
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+C(K t )

T∫

0

∑

Ξg⊂Ξ

hg||∇xΘu ||Ξg ||∇xΘu ||H1(Ξg)dt

+C(K t , K i )

T∫

0

∑

Ξg⊂Ξ

(h−2
g ||Θu ||2Ξg

+ ||Θu ||2H1(Ξg)
)dt. (52)

Integrating E22 by parts, using the definition of Fx , and applying the argument in (38) on the
boundary terms we obtain

E22 + E23 =
T∫

0

(
Fx,h − Fx , eu

)
Ξ

dt +
∑

γi ∈ΓΞ

〈
[Sxx,h − Sxx ], {eu} · ni

〉

γi

=
T∫

0

⎛

⎜
⎝

θmax∫

θmin

σmax∫

σmin

(
1

2
cos2 θσ (Nh − N )

)
dσdθ,∇x

(
g

hb
eu

)
⎞

⎟
⎠

Ξ

dt

−
∑

γi ∈ΓΞ

T∫

0

〈 θmax∫

θmin

σmax∫

σmin

(
1

2
cos2 θσ {Nh − N }

)
dσdθ,

g

hb
[eu] · ni

〉

γi

dt

−
T∫

0

〈 θmax∫

θmin

σmax∫

σmin

(
1

2
cos2 θσ (Nh − N )

)
dσdθ,

g

hb
eu · nx

〉

∂Ξ

dt

≤ C(K c)

T∫

0

||eu ||2Ξ dt + ε1

T∫

0

||∇x eu ||2Ξ dt

+C(K t , K i , K c, K k)

T∫

0

(||eN ||2Ω + ||ΘN ||2Ω
)
dt

+ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||γi dt + ε4

T∫

0

||α1/2eu ||∂Ξ dt. (53)

Expanding terms and defining B(H) = ∇σ
kσ H

sinh(2k H)
which is a Lipschitz continuous function,

we have

E24 = −1

2

T∫

0

(∇ · ch, e2
N

)
Ω

dt

= −1

2

T∫

0

(
cos θ∇x cg, e2

N

)
Ω

dt − 1

2

T∫

0

(
(1 + 1

2
cos2 θ + cos 2θ)∇x uh, e2

N

)

Ω

dt

+1

2

T∫

0

(∇x uh B(Hh), e2
N

)
Ω

dt − 1

2

T∫

0

(
σ

sinh(2k Hh)
∇x hb cos θ, e2

N

)

Ω

dt
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= −1

2

T∫

0

(
cos θ∇x cg, e2

N

)
Ω

dt

−1

2

T∫

0

(
(1 + 1

2
cos2 θ + cos 2θ)∇x (eu − Θu + u), e2

N

)

Ω

dt

+1

2

T∫

0

(∇x (eu − Θu + u)B(eξ − Θξ + H), e2
N

)
Ω

dt

−1

2

T∫

0

(
σ

sinh(2k Hh)
∇x hb cos θ, e2

N

)

Ω

dt

≤ C(K M , K k)

T∫

0

||∇xΘu ||2Ξ dt + C
(
K m, K M , K c, K k)

T∫

0

||eN ||2Ωdt

+ε1

T∫

0

||∇x eu ||2Ξ dt + C(K m, K M , K k)

T∫

0

(||eξ ||2Ξ + ||Θξ ||2Ξ + ||∇xΘu ||2Ξ)dt.

(54)

Since [(cg cos θ, cσ,h, cθ,h)] = 0 on λ j , we follow E11 to get

E25 = 1

2

∑

λ j ∈ΓΩ

〈{e2
N }, [ch] · n〉λ j = 1

2

∑

γi ∈ΓΞ

〈{e2
N }, [uh] · ni 〉γi ×κ

≤ ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt + C(K t )

T∫

0

∑

Ξg⊂Ξ

[
h−2

g ||Θu ||2Ξg
+ ||Θu ||2H1(Ξg)

]
dt

+C
(
K M , K t , K i , K k)

T∫

0

||eN ||2Ωdt. (55)

Define g(H) = − kσ
sinh(2k H)

H − cos2 θcgk, which is a Lipschitz continuous function, and
expand to obtain

E26 = (∇ · (cN − ch Ñh), eN
)
Ω

=
T∫

0

(
cos θcg∇x (N − Ñh), eN

)
Ω

dt +
T∫

0

(∇x (uN − uh Ñh), eN
)
Ω

dt

+
T∫

0

(∇σ

(
g(H)∇x uN − g(Hh)∇x uh Ñh

)
, eN

)
Ω

dt

+
T∫

0

(
∇θ

(
σ

sinh(2k H)
∇x hb sin θ N − σ

sinh(2k Hh)
∇x hb sin θ Ñh

)
, eN

)

Ω

dt
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+
T∫

0

(∇θ (∇x u cos θ sin θ N − ∇x uh cos θ sin θ Ñh), eN
)
Ω

dt

=
5∑

i=1

E26,i , (56)

where

E26,1 =
T∫

0

(
cos θcg∇xΘN , eN

)
Ω

dt ≤ C(K c)

T∫

0

(||∇xΘN ||2Ω + ||eN ||2Ω
)
dt. (57)

Following E2, we use (34) and have

E26,2 =
T∫

0

(∇x · (uN − uh Ñh), eN )Ωdt

≤ C(K m, K M , K k)

T∫

0

(||Θu ||2H1(Ξ)
+ ||ΘN ||2H1(Ω)

+ ||eN ||2Ω
)
dt

+ε1

T∫

0

||∇x eu ||2Ξ dt. (58)

For the following term, we first note that since the group velocity, cg , and wave number, k,
depend on the relative frequency, σ , that g(H) also depends on the relative frequency σ as
well as the total water depth H . Then following a similar argument in (34) with more terms,
we expand terms and use assumptions (28)–(31) to obtain

E26,3 =
T∫

0

(∇σ

(
g(H)∇x uN − g(Hh)∇x uh Ñh

)
, eN

)
Ω

dt

=
T∫

0

(∇x uN∇σ (g(H) − g(Hh)) + ∇x u(g(H) − g(Hh))∇σ N , eN )Ω dt

+
T∫

0

(∇x (Θu − eu)Ñh∇σ g(Hh) + ∇x (Θu − eu)g(Hh)∇σ Ñh, eN
)
Ω

dt

+
T∫

0

(∇x u∇σ (g(H))ΘN + ∇x ug(H)∇σ ΘN , eN )Ω dt

≤ C(K m, K k)

T∫

0

(||eξ ||2Ξ + ||Θξ ||2Ξ
)

dt + ε1

T∫

0

||∇x eu ||2Ωdt
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+C(K m, K M , K c)

T∫

0

||∇xΘu ||2Ξ dt + C(K m, K c, K k)

T∫

0

||ΘN ||2Ωdt

+C
(

K m, K M , K c, K k
) T∫

0

(||∇σ ΘN ||2Ω + ||eN ||2Ω
)

dt. (59)

Again, expanding terms, using assumptions (28)–(31) and the argument in (34), we find

E26,4 =
T∫

0

(
∇θ

(
σ

sinh(2k H)
∇x hb sin θ N − σ

sinh(2k Hh)
∇x hb sin θ Ñh

)
, eN

)

Ω

dt

≤ C
(
K c, K k)

T∫

0

||ΘN ||2Ωdt + C
(
K m, K M , K c, K k)

T∫

0

(||eξ ||2Ξ + ||Θξ ||2Ξ)dt

+C(K m, K c, K k)

T∫

0

||eN ||2Ωdt + C(K M , K c, K k)

T∫

0

||∇θΘN ||2Ωdt, (60)

and

E26,5 =
T∫

0

(∇θ (∇x u cos θ sin θ N − ∇x uh cos θ sin θ Ñh), eN
)
Ω

dt

≤ C(K m)

T∫

0

(||ΘN ||2Ω + ||eN ||2Ω
)
dt + ε1

T∫

0

||∇x eu ||2Ξ

+C
(
K m, K M)

T∫

0

(||∇xΘu ||2Ξ + ||∇θΘN ||2Ω
)
dt. (61)

Like E12 and E13, we use {ab} = {a}{b} + 1
4 [a][b] and [ab] = {a}[b] + [a]{b} to obtain

E27 + E28 = −
∑

λ j ∈ΓΩ

〈[eN (cN − ch Ñh) · n], 1〉λ j +
∑

λ j ∈ΓΩ

〈cN − Ñ↑
h {ch} · n, [eN ]〉λ j

=
∑

λ j ∈ΓΩ

〈(Θ↑
N − {ΘN }){ch} · n + 1

4
[ΘN ][ch] · n, [eN ]〉λ j

+
∑

λ j ∈ΓΩ

〈{Ñh}[ch] · n + [ΘN ]{ch} · n, {eN }〉λ j . (62)
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Writing {ch} = {ch − c} + {c} and following (35), we find

∑

λ j ∈ΓΩ

〈(Θ↑
N − {ΘN }){ch} · n, [eN ]〉λ j

≤ C(K m, K M , K t , K c)

T∫

0

∑

Ωe⊂Ω

(
h−2

e ||ΘN ||2Ω + ||ΘN ||2H1(Ω)

)
dt

+ε1

T∫

0

||∇x eu ||2Ξ dt + C
(
K M , K t , K i , K c)

T∫

0

||∇xΘu ||2Ξ dt

+C
(
K m, K M , K t , K i , K c)

T∫

0

||eN ||2Ωdt, (63)

with a similar bound for the other term in (62) with {ch}. As with E25, we have that

∑

λ j ∈ΓΩ

〈1

4
[ΘN ][ch] · n, [eN ]

〉

λ j
+

∑

λ j ∈ΓΩ

〈
{Ñh}[ch] · n, {eN }

〉

λ j

=
∑

γi ∈ΓΞ

〈1

4
[ΘN ][uh − u] · ni , [eN ]

〉

γi ×κ
+

∑

γi ∈ΓΞ

〈
{Ñh}[uh − u] · ni , {eN }

〉

γi ×κ

≤ ε2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt + C(K t )

T∫

0

∑

Ξg⊂Ξ

[h−2
g ||Θu ||2Ξg

+ ||Θu ||2H1(Ξg)
]dt

+C(K m, K M , K t , K i , K k)

T∫

0

||ΘN ||2Ωdt. (64)

In the same way,

E29 = 〈(ch Ñh − ch N̂ ) · n, eN 〉∂Ωin

≤ C
(
K m, K M , K t , K c)

T∫

0

∑

Ωe⊂Ω

(
h−2

e ||ΘN ||2Ω + ||ΘN ||2H1(Ω)

)
dt

+ε1

T∫

0

||∇x eu ||2Ξ dt + C
(
K M , K t , K i , K c)

T∫

0

||∇xΘu ||2Ξ dt

+C
(
K m, K M , K t , K i , K c)

T∫

0

||eN ||2Ωdt. (65)

For E30, we use the definition of S and apply the argument in (33) for both fS and gS to find
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E30 =
(

Sh − S

σ
, eN

)

Ω

= ( fS(Hh)Nh − fS(H)N + gS(Nh)Nh − gS(N )N , eN )Ω

≤ C(K m, K M , K k)

T∫

0

(||eξ ||2Ξ + ||Θξ ||2Ω)dt

+C
(
K m, K M)

T∫

0

(||ΘN ||2Ω + ||eN ||2Ω
)
dt. (66)

Combining (39)–(66) with (24), choosing εi , i = 1, 4 sufficiently small, we obtain

||eξ (T )||2Ξ + ||eu(T )||2Ξ + ||eN (T )||2Ω + 2

T∫

0

||μ1/2∇x eu ||2Ξ dt

+
T∫

0

∑

γi ∈ΓΞ

〈|{uh} · ni |, [eξ ]2〉γi dt +
T∫

0

〈|uh · nx |, e2
ξ 〉∂Ξin dt

+
T∫

0

〈|uh · nx |, e2
ξ 〉∂Ξout dt + 2

T∫

0

∑

γi ∈ΓΞ

||α1/2[eu]||2γi
dt

+2

T∫

0

||α1/2eu ||2∂Ξ dt +
T∫

0

∑

λ j ∈ΓΩ

〈|{ch} · n j |, [eN ]2〉λ j dt

+
T∫

0

〈|ch · n|, e2
N 〉∂Ωout dt +

T∫

0

〈|ch · n|, e2
N 〉∂Ωin dt

≤ C

T∫

0

||eξ ||2Ξ dt + C

T∫

0

||eu ||2Ξ dt + C

T∫

0

||eN ||2Ωdt

+C∗
T∫

0

∑

Ξg⊂Ξ

(h−2
g ||Θξ ||2Ξg

+ ||Θξ ||2H1(Ξg)
)dt

+C∗
T∫

0

∑

Ξg⊂Ξ

(h−2
g ||Θu ||2Ξg

+ ||Θu ||2H1(Ξg)
)dt

+C∗
T∫

0

∑

Ωe⊂Ω

(h−2
e ||ΘN ||2Ωe

+ ||ΘN ||2H1(Ωe)
)dt

+C∗
T∫

0

∑

Ξg⊂Ξ

hg||∇xΘu ||Ξg ||∇xΘu ||H1(Ξg)dt (67)

where C∗ = C(K m, K M , K t , K i , K c, K k). Using standard approximation theory results,
we find
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T∫

0

∑

Ξg⊂Ξ

(
h−2

g ||Θξ ||2Ξg
+ ||Θξ ||2H1(Ξg)

)
dt +

T∫

0

∑

Ξg⊂Ξ

(
h−2

g ||Θu ||2Ξg
+ ||Θu ||2H1(Ξg)

)
dt

+
T∫

0

∑

Ξg⊂Ξ

hg||∇xΘu ||Ξg ||∇xΘu ||H1(Ξg)dt

≤ Ch2p

T∫

0

(||ξ ||2H p+1(Ξ)
+ ||u||2H p+1(Ξ)

)
dt = C(K r )h2p, (68)

and

T∫

0

∑

Ωe⊂Ω

(
h−2

e ||ΘN ||2Ωe
+ ||ΘN ||2H1(Ωe)

)
dt

≤ Ch2 min{p,q}
T∫

0

||N ||2Hmin{p,q}+1(Ω)
dt = C(K r )h2 min{p,q}. (69)

We assume the initial data is sufficiently smooth so that

||Θξ(·, 0)||2H1(Ξ)
+ ||Θu(·, 0)||2H1(Ξ)

+ ||ΘN (·, 0)||2H1(Ω)

≤ Chmin{p,q} (||ξ0||2H p+1(Ξ)
+ ||u0||2H p+1(Ξ)

)
+ ||N0||2Hmin{p,q}+1(Ω)

≤ C(K r,0)h2 min{p,q}. (70)

Now applying Gronwall’s inequality to (67) followed by the triangle inequality we obtain
the following a priori error estimate:

Theorem 2 Assume, ξ, u, N, and initial data are sufficiently smooth so (68) to (70) hold.
Then there exists a constant

Ĉ = C
(

K m, K M , K t , K i , K c, K k, K r , K r,0, T
)

,

such that

||ξ − ξh ||L∞(0,T ;L2(Ξ)) + ||u − uh ||L∞(0,T ;L2(Ξ)) + ||u − uh ||L∞(0,T ;H1(Ξ))

+||N − Nh ||L∞(0,T ;L2(Ω)) ≤ Ĉhmin{p,q}. (71)

Lastly, we show that we can remove the dependence of Ĉ on K M . To do this we first recall
another inverse inequality

||v(·, t)||L∞(R) ≤ K h−d/2||v(·, t)||R,

where d is the dimension of region R. Assuming p, q > 2 and h sufficiently small, we have

||eξ ||L∞(0,T ;L∞(Ξ)) ≤ K Ĉh p−1 � K M ,

with a similar bound for eu and

||eN ||L∞(0,T ;L∞(Ω)) ≤ K Ĉhmin(p,q)−3/2 � K M ,
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and therefore we can remove the dependence of Ĉ on K M [11]. We simplified the analysis
by only considering one geographic dimension which in turn simplified the propagation
velocities, c; however, all of the previous arguments stand for the two-geographic dimension
problem.

6 Numerical Results

In this section, we investigate the experimental convergence rates for the DG method applied
to the wave model, using a manufactured solution. We also verify the model with several
analytic test cases which can be found in the ONR test bed [24]. These analytic test cases
are physically one-dimensional but computed in the two-dimensional geographic space. We
continue by showing preliminary numerical results of the DG spectral wave model loosely
coupled to a DG circulation model (which is described in [4]). All numerical results are
computed in the full two-dimensional geographic space, even though the analytic test cases for
the spectral wave model are physically only one-dimensional. For the wave model, geographic
space is discretized with unstructured triangular elements and spectral space is discretized
with structured quadrilateral elements.

6.1 Wave Model

6.1.1 Manufactured Solutions

We first examine individually the wave model with manufactured solutions. To inspect the
convergence rates, β, we simplify the action balance equation by setting the propagation
velocity to c = 1 and the source term to S = 0 and use the manufactured solution

N = sin(x − t) + cos(y − t) + sin(σ − t) + cos(θ − t),

where x, y, σ, θ and t are dimensionless. The geographic and spectral domains are (0, 10)×
(0, 10) and are discretized with triangles and quadrilaterals, respectively, with element size
h. The series of geographic meshes used all have the same structure. The first geographic
mesh, with h = L/2 is shown in Fig. 2. A second order Runge–Kutta scheme is used with
a time step of Δt = 0.005 s, so that errors due to the time discretization are negligible. The
errors and convergence rates are shown in Table 1 for the initial condition. For T = 5s, the

Fig. 2 The first mesh of a
sequence of geographic meshes,
all with the same structure, used
for the manufactured solutions.
The mesh shown here has an
element size of h = L/2
sequence of geographic meshes
for the manufactured solutions
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Table 1 Error in the initial condition for the manufactured solution

h p, q = 0 p, q = 1 p, q = 2 p, q = 3 p, q = 4

L2 error β L2 error β L2 error β L2 error β L2 error β

L/2 146.6797 − 87.7164 – 40.1412 – 12.5245 – 2.0678 –

L/4 88.4044 0.7305 27.4349 1.6768 5.9322 2.7584 0.9200 3.7670 7.2995e−2 4.8242

L/8 46.0436 0.9411 7.2291 1.9241 0.7747 2.9369 5.9748e−2 3.9447 2.3583e−3 4.9520

L/16 23.2591 0.9852 1.8311 1.9811 9.7896e−2 2.9843 3.7700e−3 3.9863 7.4134e−5 4.9915

L/32 11.6595 0.9963 0.4593 1.9952 1.2270e−2 2.9961 2.3619e−4 3.9965 2.2390e−6 5.0492

Table 2 Error and convergence rates for the manufactured solution at T=5s

h p, q = 0 p, q = 1 p, q = 2 p, q = 3 p, q = 4

L2 error β L2 error β L2 error β L2 error β L2 error β

L/2 134.5962 − 111.0265 – 53.8817 – 18.1940 – 4.0976 –

L/4 115.8146 0.2168 45.6310 1.2828 8.8633 2.6039 1.3717 3.7294 0.1453 4.8177

L/8 86.3410 0.4237 12.3717 1.8830 1.1659 2.9264 8.9412e−2 3.9394 4.9555e−3 4.8739

L/16 57.8860 0.5768 3.0650 2.0131 0.1479 2.9788 5.9012e−3 3.9214 – –

L/32 35.2341 0.7162 0.7643 2.0037 1.8667e−2 2.9861 – – – –

error and convergence rates are recorded in Table 2 and the errors are plotted against the step
size h and number of degrees of freedom in Fig. 3. For h small enough, we obtain about
p + 1 convergence rates.

Restricting to the geographic domain, we use the manufactured solution

N = sin(x − t) + cos(y − t),

to examine the convergence rates of Runge–Kutta methods of different orders. We employ
the geographic mesh with h = L/64 and a quartic approximation. Errors and convergence
rates are shown in Table 3, which demonstrate the correct orders of approximations for each
of the different ordered Runge–Kutta methods.

6.1.2 Ambient Current Test Cases

To verify the wave model, we first test the propagation scheme in the presence of an ambient
current (omitting source terms). We will examine four different cases of monochromatic,
unidirectional waves, not necessarily normal to the coast, in the presence of different ambient
currents. The first two cases examine an incoming wave traveling a distance of 4,000 m in
deep water (H = 10,000 m) in the presence of an opposing current (a) and a following current
(b) with a velocity that increases from 0 to 2 m/s from the south to the north. Explicitly the
current is

(a) u =
(

0
−2/4, 000y

)
m/s, (b) u =

(
0

2/4, 000y

)
m/s.

The incoming, monochromatic, long-crested waves are simulated with a Gaussian-shaped
frequency spectrum, with peak frequency 0.1 Hz, standard deviation 0.01 Hz, and a cos500(θ)
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Fig. 3 Errors of the manufactured solutions

directional distribution (i.e., directional spreading is 5◦ [17]). The waves have a significant
wave height of 1 m and a main direction of 90◦. The incoming wave boundary is indicated
with a blue line on the geographic mesh shown in Fig. 4. All other boundaries are absorbing.
The spectral domain has 40 logarithmically distributed elements in frequency space that range
from 0.05 to 0.25 Hz, which does not include the blocking frequency in the opposing current
case, and has constant directional element spacing ofΔθ = 2◦. We are interested in the steady-
state solution along the center of the geographic domain (the red line shown in Fig. 4). Steady-
state solutions are achieved when there is little to no change in consecutive time-steps (Δt =
2 s) of the significant wave height in each geographic element. The results are shown in Fig. 5
curves (a) and (b). The DG solution is the black line and employs linears in both geographic
and spectral space. We also show SWAN’s stationary solution with the same numerical
settings and also omitting source terms in blue for comparison because it is a well-trusted
and widely-used wave model. The red line is the analytic solution (e.g.[15,22]), which is
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Table 3 Errors and convergence rates for different orders of Runge–Kutta methods

nRK = 2,2 nRK = 3,3 nRK = 4,5

Δt L2 Error β L2 Error β L2 Error β

0.01 2.3971e−5 – 1.2205e−6 – 8.3565e−8 –

0.005 2.3971e−5 0 1.2153e−7 3.3280 4.8452e−9 4.1083

0.0025 5.9911e−6 2.0004 1.3692e−8 3.1500 – –

0.00125 1.4975e−6 2.0002 – – – –

0.000625 3.7437e−7 2.0001 – – – –

H2
s

H2
s,i

= c2
i

c(c + 2U )

in which Hs is the wave height and c is the group velocity, where i represents the inci-
dent value. The DG solutions closely follow the analytic solutions. Note that SWAN pro-
duces significant wave heights that are larger than the analytic solution for the opposing
current case. SWAN’s solution improves slightly when we use Δθ = 0.2◦ and 160 frequency
elements.

The final two ambient current test cases turn the previous incoming waves by ±30◦
[for incoming main wave directions of 120◦ (c) and 60◦ (d)] in the presence of a slanted
current,

u =
(

2/4, 000y
0

)
m/s.

The analytic solution (e.g. [12,15]) is

Hs = Hs,i

√
sin(2θi )

sin(2θ)

θ = arccos

[
gki cos(θi )

(ω − Uki cos(θi ))2

]
.

Again we use the geographic mesh shown in Fig. 4. The spectral domain has 40 logarithmi-
cally distributed elements in frequency space that range from 0.05 to 0.25 Hz and has constant
directional element spacing of Δθ = 2◦ (c) or Δθ = 1.5◦ (d). The steady-state solutions of
the significant wave height and main wave direction are shown in Fig. 5 curves (c) and (d).
The DG solutions using linears in geographic and spectral space are shown in black. SWAN
is shown in blue and the analytic solution is shown in red. The DG solutions closely match the
analytic solutions for both the significant wave height and the main direction demonstrating
our model’s ability to closely model incoming waves in the presence of an ambient current.

Further examining the opposing current case (a), we explore the benefit of using higher
order approximations in geographic and spectral space and the effect of unstructured, geo-
graphic meshes on the DG solution. For this discussion we consider two coarse meshes,
one with a structured and one with an unstructured, geographic mesh, and a fine mesh. The
unstructured, coarse, geographic mesh, Fig. 6a, has similar resolution as the structured, coarse
mesh, Fig. 6b. The structured, coarse geographic mesh has a sixteenth of the resolution of
the geographic fine mesh, shown in Fig. 6c and the coarse spectral mesh only has about half
the resolution as the fine spectral mesh (Δθ = 2◦, 40 logarithmically distributed frequency
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Fig. 4 The geographic mesh for the ambient current test cases. The blue line indicates the incoming wave
boundary and the red line indicates the line along which the steady state solutions are shown
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Fig. 5 Steady state solutions of the significant wave height, Hs , and the main direction, θ , for the ambient
current test cases. The DG solution utilizing linears in both geographic and spectral space is compared to the
unstructured SWAN and analytic solutions

elements). The steady state solutions of the significant wave height are shown in Fig. 7. For
reference, SWAN solutions are shown in cyan and blue representing the structured, coarse
and fine mesh solutions respectively. Note that the SWAN fine mesh solution is a significant

123



364 J Sci Comput (2014) 59:334–370

Fig. 6 The coarse unstructured (a) and structured meshes (b) and the fine mesh (c) used for the opposing
current case in Fig. 7
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Fig. 7 The steady-state solutions of the significant wave height for the opposing current case (a) are shown.
We compare DG solutions with similar numbers of degrees of freedom, one on the fine mesh with constants
and the other two on the coarse meshes, one with a structured and one with an unstructured geographic mesh,
with linears in geographic space and cubics in spectral space. SWAN solutions on both the structured, coarse
and fine meshes along with the analytic solution are also shown
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improvement from the coarse mesh solution, which does not provide enough resolution. We
show three DG solutions that employ either the structured or unstructured coarse mesh or the
fine mesh but have similar numbers of degrees of freedom. The first, shown in green, employs
the fine mesh with constant approximations in both geographic and spectral space (p,q=0).
The second and third DG solutions, shown in magenta and black, employ the unstructured
and structured coarse mesh, respectively, but with higher order approximations, linears in
geographic space and cubics in spectral space (p=1,q=3). Comparing the SWAN fine mesh
and the DG low-order, fine mesh solutions, we observe that SWAN’s fine mesh solution is a
better match to the analytic solution (shown in red). This is not unexpected because SWAN
is using a higher order approximation than the constant approximation of the DG solution.
Comparing the DG solutions we see a significant benefit in using higher orders of approx-
imations on the coarse mesh versus a lower order of approximation on the fine mesh even
though all solutions employ similar numbers of degrees of freedom. In particular, note that
the coarse, higher-order solutions match the analytic solution, shown in red, better than the
lower-order, fine mesh DG solution as well as SWAN’s fine mesh solution. Also, note that
the structure of the coarse mesh does not effect the solution.

6.1.3 Depth-Induced Shoaling and Refraction

We now test the propagation of monochromatic, long-crested waves in shallow water with
varying depth and no current. We consider a wave propagating toward a plane beach over a
distance of 4,000 m from a depth of 20 m (slope 1:200). The incoming wave has a significant
wave height of 1 m, a Gaussian-shaped frequency spectrum, with peak frequency 0.1 Hz,
standard deviation 0.01 Hz, and a cos500(θ) directional distribution. To test depth-induced
shoaling we consider the incoming wave to have a main direction of 90◦ (a) and to test
depth-induced refraction we consider the incoming wave to have a main direction of 120◦
(b). The analytic solution for both cases is given by (e.g. [21])

H2
s

H2
s,i

= ci

c

cos(θi )

cos(θ)

and the wave direction is calculated with Snell’s law. The geographic mesh is shown in
Fig. 8; the element size h varies from 800 to 20 m as the depth decreases from 20 to 0 m
(d = 20−1/200y). The spectral mesh has 40 frequency elements distributed logarithmically
from 0.01 to 0.25 Hz and the directional elements have a constant spacing of Δθ = 5◦ (SWAN
solutions use Δθ = 0.25◦). In Fig. 9, the steady-state solution of the significant wave height
and main direction are shown where the x-axis corresponds to the red line indicated on the
geographic mesh in Fig. 8. The DG solution employing linears in geographic and spectral
space are shown in black and SWAN is shown in blue (for depths greater than 0.05 m). The
DG model closely reproduces the analytic solution, shown in red, for the significant wave

Fig. 8 The geographic mesh for the depth-induced shoaling and refraction cases. The blue line indicates
the incoming wave boundary and the red line indicates the line along which the steady state solutions are
considered
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Fig. 9 Steady state solutions of the significant wave height, Hs , and the main direction, θ , to the depth-
induced shoaling and refraction cases. The DG solution utilizing linears in both geographic and spectral space
is compared to the unstructured SWAN and analytic solutions

height and the turning of the main direction. Note the improved match to the analytic solution
for wave directions, relative to SWAN.

6.2 Coupled Model

To verify the coupled DG wave/circulation model, we examine waves refracting over a
circular shoal, as seen in Fig. 10, in the presence of a current. This test problem is similar
to a test problem on structured meshes from Rogers et. al. [25] and Dietrich et. al. [9]. The
source terms are neglected. At the north, south, and west boundaries, an incoming wave is
prescribed by a JONSWAP (with peak enhancement factor γ = 3) spectrum with a significant
wave height of 0.5 m, a peak period of 15.2 s, and a main direction of 335◦ with a cos14(θ)

directional distribution (i.e., directional spreading is 15◦). Incoming and outgoing fluxes are
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Fig. 10 The bathymetry and geographic mesh for the circular shoal case

specified in DG-SWEM so that a current of 0.1 m/s flows from west to east. The geographic
mesh with h ≈ 3, 000 m is shown in Fig. 10. The spectral domain has a directional spacing
of Δθ = 10◦ with 33 logarithmically distributed frequency elements that range from 0.05 to
1.0 Hz.

The DG wave/circulation model is coupled loosely. First, the circulation model is run, and
it creates output files of the water levels and currents at every 600 s. These files are then used
as input to the spectral wave model, which in turn outputs the radiation stresses every 600 s.
These radiation stress files are then used as forcing in a new simulation of the circulation
model. This process is repeated until there is no change in the output quantities.

For comparison purposes, we compare the loosely-coupled DG wave/circulation models
with a tight coupling of DG-SWEM with SWAN. This tight coupling mimics the coupling
of SWAN+ADCIRC as described in [9], so that the models run as the same executable on
the same unstructured mesh, and information is passed through local memory without the
need for interpolation. So DG-SWEM is either coupled loosely with the DG wave model,
or tightly with SWAN. For both coupling paradigms, the inter-model communication occurs
every 600 s. DG-SWEM uses a time step of 1 s, the DG spectral wave model uses a time step
of 20 s and SWAN uses a time step of 600 s.

In Fig. 11, we show two DG coupled model solutions, one which uses constants (a) and
another that uses linears (b) in the wave model in geographic space. Both use linear approx-
imations in spectral space. Also shown in Fig. 11 are two SWAN+DG-SWEM solutions: the
first is the solution on the original mesh (c) and the second is a fine grid “exact” solution (d).
For the SWAN+DG-SWEM solution, we observe in Fig. 11 (c) that the waves refract pre-
maturely when the shoal is represented on the original mesh. This is similar to the behavior
observed in a test case without currents on structured meshes in [9], in which the authors
showed that either refinement of the mesh or a limiter is needed to prevent the early refrac-
tion of the waves. The DG coupled model does not have premature refraction; however, the
constant approximation (a) is too diffusive and linear approximations need to be used. The
linear approximation (c) does qualitatively match the fine grid solution (d), again showing
the benefit of higher orders in the DG method.
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Fig. 11 The DG wave/circulation model results for the circular shoal are shown with constant (a) or linear (b)
approximations in geographic space and linear approximations in spectral space in the wave model. SWAN’s
results tightly-coupled to DG-SWEM are also shown on the original mesh (c) and a fine mesh (d), which we
consider ‘truth’. The black line indicates the 110 and 290 m contours of the bathymetry

7 Conclusion

A spectral wave model has been developed to utilize the DG method in both geographic and
spectral space. This numerical method allows for the use of unstructured geographic meshes
and higher-order approximations in both geographic and spectral space. For the ambient
current test cases as well as the depth induced shoaling and refraction test cases, we used
linear approximations and accurately modeled the analytic solution of the significant wave
height and the main wave direction. In addition, for the opposing current case, we showed
that we obtain a more accurate solution by using higher-order approximations on a coarse
mesh as opposed to a lower-order approximation on a refined mesh with similar numbers of
degrees of freedom.

The DG spectral wave model has been loosely coupled to DG-SWEM. This coupled model
employs the same unstructured geographic mesh, which eliminates interpolation error and
can pass higher-order information between the two respective models. In the preliminary
results of the coupled wave model, we found we needed a linear approximation in spectral
space to properly resolve the significant wave height because the constant approximation
was too diffusive. In general, we found that to obtain reliable results, for both the wave
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model individually and the coupled model, linear approximations are needed in spectral
space; however, if larger spectral elements are used, even higher approximations might be
necessary to maintain accuracy.

An a priori error estimate was performed for the formulated DG coupled wave/circulation
model. The convergence rate of the model was found to be the minimum of p and q , the poly-
nomial orders of approximation for geographic and spectral space respectively. Examining
the wave model separately, we observed roughly p + 1 convergence rates when examining
manufactured solutions for p = q and h small.

One potential drawback of the DG method is that it can be computationally more expensive
than other methods such as finite element or finite difference methods due to the increased
number of degrees of freedom. Going forward, we will optimize the DG spectral wave model
for efficiency in addition to exploring p-adaptivity to obtain further speed-up. We will expand
the capabilities to the DG spectral wave model, such as allowing for spherical coordinates
and tightly coupling the wave model to DG-SWEM. Future work will also involve validating
the model on realistic simulations with source terms.
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