Hurricane Wave and Storm Surge Forecasting for the Carolina Coast

JC Dietrich¹, R Cyriac¹, RA Luettich Jr², JG Fleming³, BO Blanton⁴

¹Dep't of Civil, Construction, and Environmental Engineering, NC State University ²Institute of Marine Sciences, University of North Carolina at Chapel Hill ³Seahorse Coastal Consulting, Morehead City, NC ⁴Renaissance Computing Institute, Chapel Hill, NC

> MARI & CCPO Seminar Series Old Dominion University, Norfolk VA 26 January 2015

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - Assistant Professor: 08/2013 to present

CCEE Department, Mann Hall, NCSU

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

University of Texas at Austin

- Institute for Computational Engineering and Sciences
 - ▶ Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ▶ Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- ► Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - Assistant Professor: 08/2013 to present

University of Texas at Austin

- ► Institute for Computational Engineering and Sciences
 - ▶ Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ► Graduate Researcher: 08/2005 to 10/2010

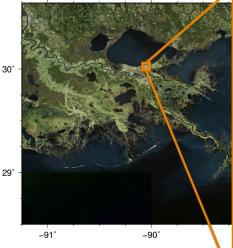
University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

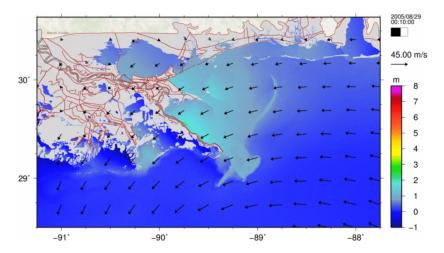
Hurricane Season 2005 Impacts on Southern Louisiana

Katrina: 08/28 - 08/29

Rita: 08/28 - 08/29



Hurricane Season 2005 Flooding of New Orleans


・ロト・雪・・雨・・雨・・日・ シック

Hurricane Season 2005 Flooding of New Orleans

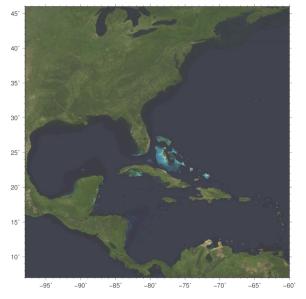
Hurricane Season 2005 Katrina (2005) on 29 August

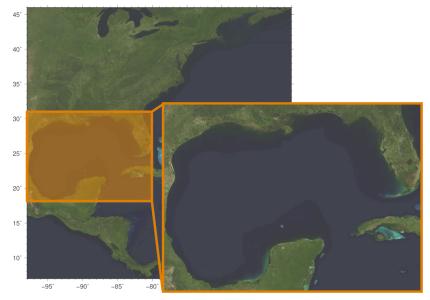
S Bunya, JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part I Model Development and Validation. Monthly Weather Review, 138(2), 345-377.

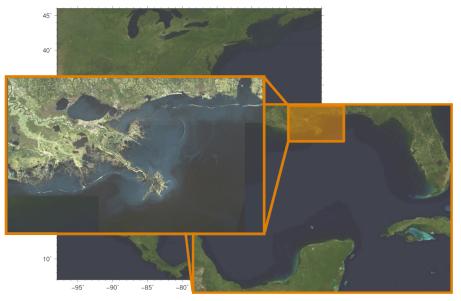
JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part II Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378-404.

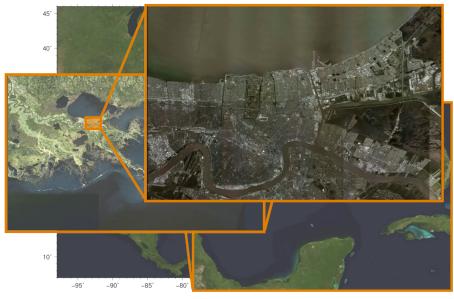
Introduction

About Me Hurricane Season 2005

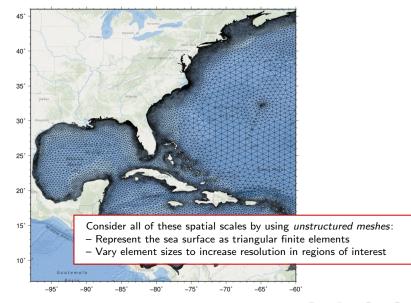

High-Resolution Models for Southern Louisiana

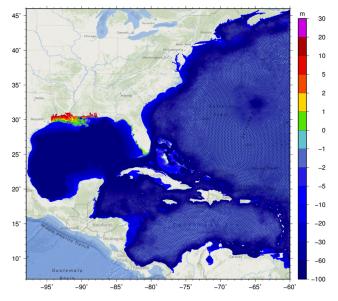

Wide Range of Spatial Scales Waves and Storm Surge Tight Coupling of SWAN+ADCIRC Validation for Gustav (2008) Engineering Applications

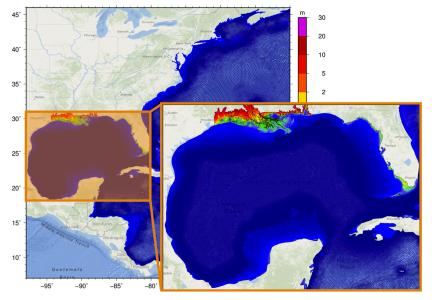

Real-Time Forecasting for NC

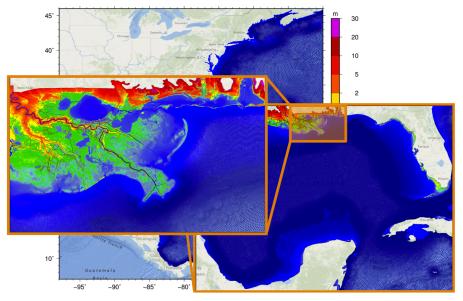

ADCIRC Surge Guidance System (ASGS) Strengthening Guidance for North Carolina Arthur (2014) Effects on Coastal NC

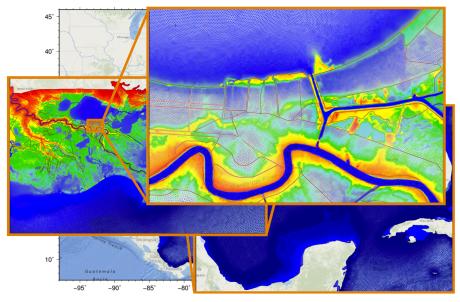
Summary



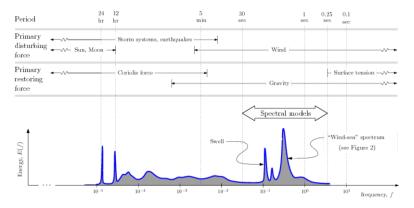





Wide Range of Spatial Scales Unstructured, Finite-Element Meshes



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)



Waves and Storm Surge Temporal Scales

Sea surface can be described with both long and short waves

- Long waves due to tides, storm surge
- Short waves due to wind (swell and wind-sea)

▲ロト▲圖ト▲画ト▲画ト 画 のべつ

Waves and Storm Surge Simulating WAves Nearshore (SWAN)

For short waves, we use SWAN

- Does not represent the phase of each individual wave
 - Conserved quantity is the action density $N(t, x, y, \sigma, \theta)$
 - Can be integrated to compute statistical wave properties

Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\mathbf{x}} \cdot \left[(\mathbf{c}_g + \mathbf{U}) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = 0$$

Solution methods in geographic (x, y) and spectral (σ, θ) spaces:

- Gauss-Seidel in geographic space
- Iterative solution of matrix system in spectral space

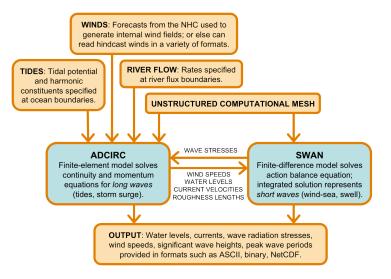
Waves and Storm Surge ADvanced CIRCulation (ADCIRC)

For long waves, we use ADCIRC

Does represent the phases of tides and/or storm surge

Solves the generalized wave continuity equation for water levels ζ :

$$\frac{\partial^2 \zeta}{\partial t^2} + \tau_0 \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_x}{\partial x} + \frac{\partial \tilde{J}_y}{\partial y} - UH \frac{\partial \tau_0}{\partial x} - VH \frac{\partial \tau_0}{\partial y} = 0$$

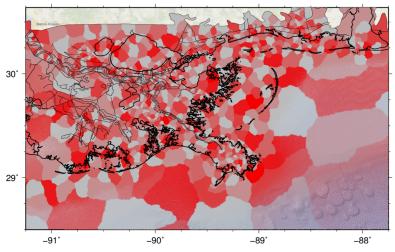

Solves the depth-averaged momentum equations for currents (U, V):

$$\frac{DU}{Dt} - fV = -g\frac{\partial}{\partial x} \left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_0 H} + \frac{M_x - D_x}{H}$$

$$\frac{DV}{Dt} + fU = -g\frac{\partial}{\partial y}\left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_0 H} + \frac{M_y - D_y}{H}$$

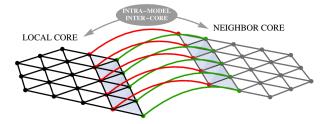
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tight Coupling of SWAN+ADCIRC Flow Chart



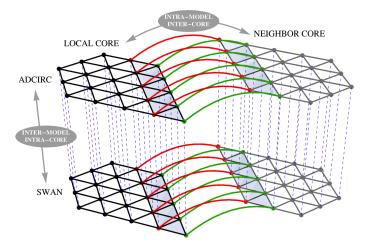
JC Dietrich, et al. (2011). Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45-65, DOI:10.1016/j.coastaleng.2010.08.001.

Tight Coupling of SWAN+ADCIRC Domain Decomposition

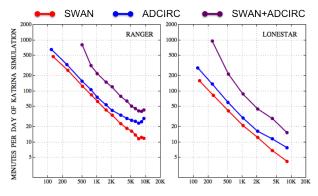

Large-scale problem is cut into thousands of small-scale problems

Each computational core works on its own sub-mesh

Tight Coupling of SWAN+ADCIRC Parallel Communication


Communication between cores at sub-mesh boundaries

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで


Tight Coupling of SWAN+ADCIRC Parallel Communication

Communication between cores at sub-mesh boundaries

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

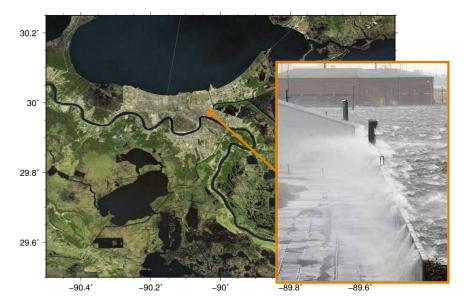
Tight Coupling of SWAN+ADCIRC Parallel Scaling

NUMBER OF COMPUTATIONAL CORES

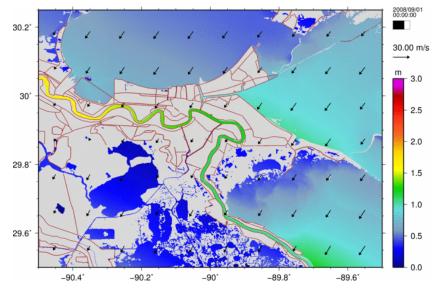
	TACC Ranger	TACC Lonestar
Node	Sun Blade x6420	Dell PowerEdge M610
CPU	4 Quad-core AMD Opteron 8356	2 Six-core Xeon 5680
Frequency	2.3 GHz	3.33 GHz
Architecture	AMD K10 (Barcelona)	Intel Nehalem (Westmere-EP)


▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

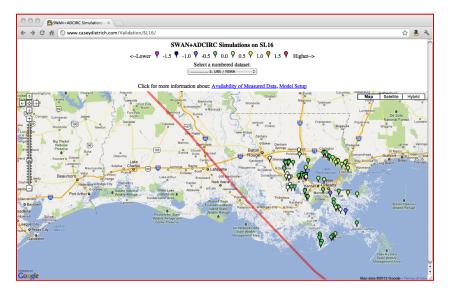
Validation for Gustav (2008) Near Flooding of New Orleans



(ロ)(母)(ヨ)(ヨ)(ヨ)(日)(のへの)

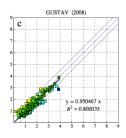

Validation for Gustav (2008) Near Flooding of New Orleans

Validation for Gustav (2008) Near Flooding of New Orleans


Validation for Gustav (2008) Day of Landfall

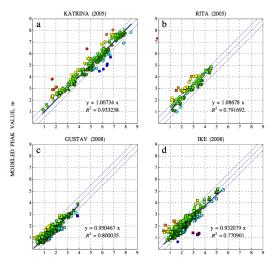
JC Dietrich, et al. (2011). Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Validation and Synoptic Analysis in Southern Louisiana. Monthly Weather Review, 139(8), 2488-2522.

JOC.


Validation for Gustav (2008) High-Water Marks

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

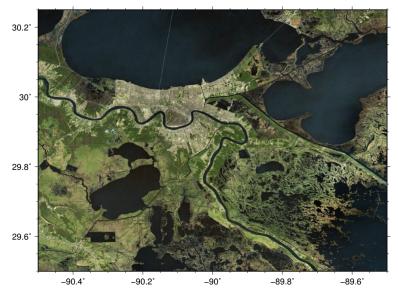
Validation for Gustav (2008) High-Water Marks



MEASURED PEAK VALUE, m

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Validation for Gustav (2008) High-Water Marks



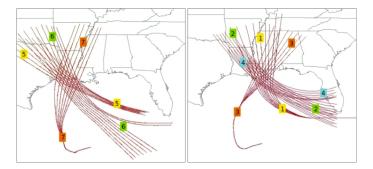
MEASURED PEAK VALUE, m

JC Dietrich, et al. (2012). Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge. Journal of Scientific Computing, 52(2), 468-497.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Engineering Applications Surge Barrier Design with the USACE

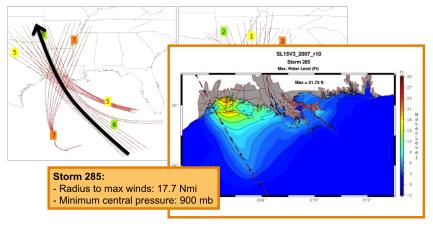
Engineering Applications Surge Barrier Design with the USACE


Engineering Applications Surge Barrier Design with the USACE

Engineering Applications Floodplain Risk Maps for FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

- Hypothetical storms with varying characteristics
- Combine results to develop 100-yr flood maps



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Engineering Applications Floodplain Risk Maps for FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

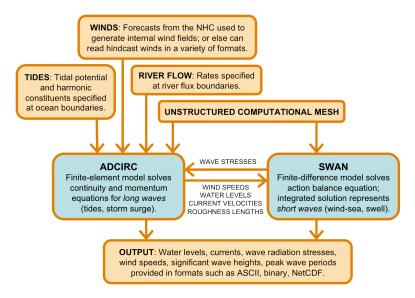
- Hypothetical storms with varying characteristics
- Combine results to develop 100-yr flood maps

ADCIRC Surge Guidance System (ASGS)

SWAN+ADCIRC can be employed in real-time via the ASGS

Everything happens automatically

Models are initialized, run and processed by Perl scripts


Wind fields from two sources:

- 1. Under normal conditions:
 - Downloaded from NAM model output by NOAA/NCEP
 - Converted into format compatible with SWAN+ADCIRC
- 2. Under hurricane conditions:
 - Download advisories from NOAA/NHC
 - ▶ Generate wind field using parametric model (Holland, 1980)

Guidance can be shared in multiple formats:

- Raster images (JPG, PNG, etc.)
- ► Geo-referenced raster images (Google Earth, GIS)
- Web service (coastalemergency.org)

ADCIRC Surge Guidance System (ASGS) Flow Chart

ADCIRC Surge Guidance System (ASGS) Development Teams

University of North Carolina at Chapel Hill

- Provide forecasts for Carolina and surrounding states via Google Maps application (nc-cera.renci.org)
- Guidance during Irene (2011) prompted Coast Guard to shift operations to avoid flooding of operations center

Louisiana State University

 Provide forecasts for Louisiana and northern Gulf states via Google Maps application (cera.cct.lsu.edu)

THE UNIVERSITY OF TEXAS

University of Texas at Austin

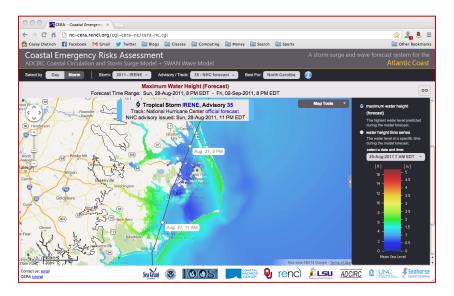
- Provide forecasts for storms impacting Texas coastline; partnerships with Texas State Operations Center
- During Isaac (2012), guidance shared with NWS offices in Fort Worth, Tallahassee and Miami

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Strengthening Guidance for North Carolina Web-Based Guidance

In North Carolina, the guidance is available from the Coastal Emergency Risks Assessment (CERA) team:

Shared via Web portal: nc-cera.renci.org


Updated often with new guidance:

- Normal conditions with base meteorology from NOAA/NCEP
- Extreme conditions with storm advisories from NOAA/NHC

Guidance is interactive within Google Maps:

- View results as a time series or as maxima
- Select layers for:
 - Water levels (above MSL or above ground)
 - Waves (significant heights, peak periods)
 - Wind speeds
 - Hydrographs at NOAA/NOS gage stations

Strengthening Guidance for North Carolina Example during Irene (2011)

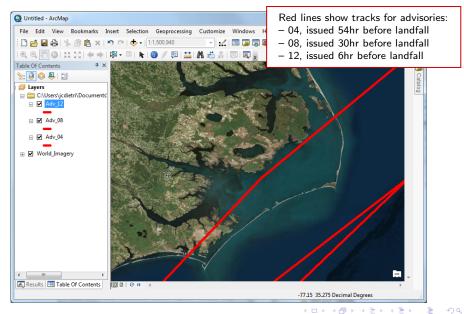
◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Strengthening Guidance for North Carolina Expansion of Guidance to Other Formats

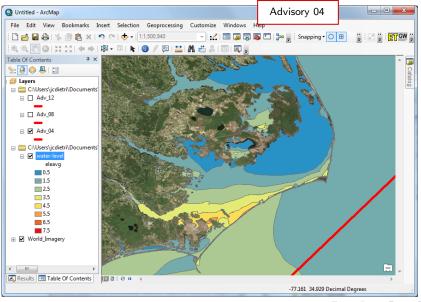
Some partners prefer guidance in other formats:

- Polygon-based formats:
 - Shapefiles and ancillary files for GIS
 - KML files for Google Earth

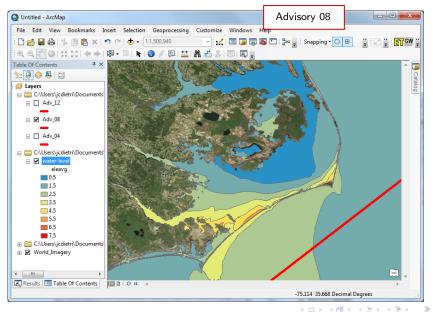
► These files can be overlaid with information from other sources


We developed Python-based scripts to convert SWAN+ADCIRC output

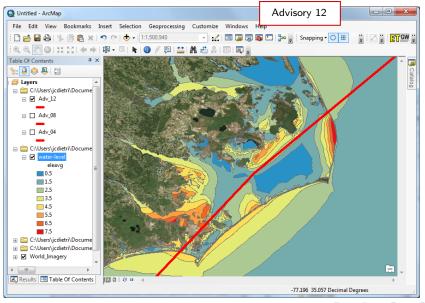
- Based on older scripts from BO Blanton, RA Luettich Jr
- Expanded to consider time series information, KML formats


Now sharing guidance in developmental formats with partners at NWS offices, state and local emergency management teams

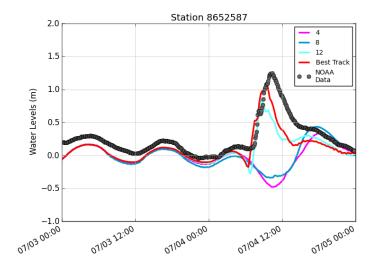
- Guidance products are generated and shared automatically
- Goal Integrate these products as downloads from NC-CERA


Arthur (2014) Effects on Coastal NC Track Uncertainty

Arthur (2014) Effects on Coastal NC Maximum Water Levels



Arthur (2014) Effects on Coastal NC Maximum Water Levels



~ ~ ~ ~ ~

Arthur (2014) Effects on Coastal NC Maximum Water Levels

Arthur (2014) Effects on Coastal NC Surge Measurements at Oregon Inlet Marina

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Summary

High-resolution models for southern Louisiana:

- Resolution varies from kilometers to meters in unstructured mesh
- Tight coupling of SWAN+ADCIRC
- Validation to wealth of measurement data
 - Katrina (2005) and Gustav (2008) in LA

Real-time forecasting for coastal North Carolina:

- CERA Web-based guidance for NC coast
- Expanding guidance to GIS and KML formats
- Useful information despite track uncertainties
 - Irene (2011) and Arthur (2014) in NC

(日)、

-