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Hurricane Season 2005
Impacts on Southern Louisiana

Katrina: 08/28 - 08/29 Rita: 09/22 - 09/24


kat-rita-combined.mov
Media File (video/quicktime)



Hurricane Season 2005
Flooding of New Orleans
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Hurricane Season 2005
Katrina (2005) on 29 August

S Bunya, JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern
Louisiana and Mississippi: Part I – Model Development and Validation. Monthly Weather Review, 138(2), 345-377.

JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and
Mississippi: Part II – Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378-404.


Katrina_SL15v7l_Ele-Wind_SELA.mov
Media File (video/quicktime)



Wide Range of Spatial Scales
Gulf and Atlantic Coasts
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Wide Range of Spatial Scales
Unstructured, Finite-Element Meshes

Consider all of these spatial scales by using unstructured meshes:
– Represent the sea surface as triangular finite elements
– Vary element sizes to increase resolution in regions of interest



Wide Range of Spatial Scales
SL16 Mesh for Southern Louisiana
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Waves and Storm Surge
Temporal Scales

Sea surface can be described with both long and short waves

I Long waves due to tides, storm surge

I Short waves due to wind (swell and wind-sea)



Waves and Storm Surge
Simulating WAves Nearshore (SWAN)

For short waves, we use SWAN
I Does not represent the phase of each individual wave

I Conserved quantity is the action density N(t, x , y , σ, θ)
I Can be integrated to compute statistical wave properties

Solves the action balance equation:

∂N

∂t
+∇x ·

[
(cg + U)N

]
+
∂cθN

∂θ
+
∂cσN

∂σ
= 0

Solution methods in geographic (x , y) and spectral (σ, θ) spaces:

I Gauss-Seidel in geographic space

I Iterative solution of matrix system in spectral space



Waves and Storm Surge
ADvanced CIRCulation (ADCIRC)

For long waves, we use ADCIRC

I Does represent the phases of tides and/or storm surge

Solves the generalized wave continuity equation for water levels ζ:
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Solves the depth-averaged momentum equations for currents (U,V ):
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Tight Coupling of SWAN+ADCIRC
Flow Chart

JC Dietrich, et al. (2011). Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58,
45-65, DOI:10.1016/j.coastaleng.2010.08.001.



Tight Coupling of SWAN+ADCIRC
Domain Decomposition

Large-scale problem is cut into thousands of small-scale problems

I Each computational core works on its own sub-mesh



Tight Coupling of SWAN+ADCIRC
Parallel Communication

Communication between cores at sub-mesh boundaries
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Tight Coupling of SWAN+ADCIRC
Parallel Scaling

TACC Ranger TACC Lonestar
Node Sun Blade x6420 Dell PowerEdge M610
CPU 4 Quad-core AMD Opteron 8356 2 Six-core Xeon 5680
Frequency 2.3 GHz 3.33 GHz
Architecture AMD K10 (Barcelona) Intel Nehalem (Westmere-EP)



Engineering Applications
Surge Barrier Design with the USACE
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Engineering Applications
Floodplain Risk Maps for FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

I Hypothetical storms with varying characteristics

I Combine results to develop 100-yr flood maps
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Real-Time Forecasting
North Carolina Forecasting System (NCFS)

In North Carolina, the guidance is available from the Coastal Emergency
Risks Assessment (CERA) team:

I Shared via Web portal: nc-cera.renci.org

Updated often with new guidance:

I Normal conditions with base meteorology from NOAA/NCEP

I Extreme conditions with storm advisories from NOAA/NHC

Guidance is interactive within Google Maps:

I View results as a time series or as maxima
I Select layers for:

I Water levels (above MSL or above ground)
I Waves (significant heights, peak periods)
I Wind speeds
I Hydrographs at NOAA/NOS gage stations

nc-cera.renci.org


Real-Time Forecasting
Example during Irene (2011): nc-cera.renci.org

nc-cera.renci.org
http://nc-cera.renci.org/cgi-cera-nc/cera-nc.cgi?ne=36.730751,-73.388731&sw=34.534403,-78.744566&zoom=8&maptype=Roadmap&maptools=false&query=false&trackquery=false&anilayer=&isdefault=0&is_storm=1&day=20110828&time=2000&com=62&year=2011&storm=9&advisory=35&track=t01_0&tz=edt&panel=1&selectmenu=1&daymenu=28-Aug-2011&layer1=trackline&layer0=maxelev&timestep_elev=20110829T1100&timestep_inun=&timestep_hsign=&timestep_wvel=&mapname=roadmap&mapextent=atlantic&queryonoff=0&trackonoff=0


Dynamic Load Balancing
Initial Progress for DHS CRCoE Project

Motivation:

I Predictive models are costly

I Hundreds or even thousands of CPUs, hours of wall-clock time

I Why spend resources on regions that are never flooded by the storm?

Dynamic load balancing:

I Assign an equal amount of wet regions to each core

I Reallocate computational resources to improve parallel efficiency

I Each core will be responsible for developing its own subdomain

Initial attempts:

I Optimize the initial domain decomposition

I Decomposition is still static for now



Dynamic Load Balancing
History of Domain Decomposition in ADCIRC

We use METIS to decompose our domain

I Separate library, written in C, developed at Univ. Minnesota

I Weights based on the number of edges connected to each vertex

I METIS tries to equalize the weights across the subdomains

Our preprocessor (adcprep) was written about 15-18 years ago

I Our domains were entirely wet – oceans and coastal regions

I No floodplains or dry regions to consider in the decomposition

I Initial decomposition was static

Need to revise the domain decomposition

I Equal amounts of wet and dry to each core

I Make ADCIRC skip computations on dry vertices



Dynamic Load Balancing
Changes to adcprep Preprocessor

Now METIS is called twice

I Called first to decompose only the wet regions

I Called again to decompose only the dry regions

Each core is assigned one wet region, and one dry region

I This way, each core will be contributing to the workload

I Work is balanced at start of simulation

I May become imbalanced due to wetting / drying during simulation

No guarantee that each core’s wet and dry regions will be connected

I One core may have two subdomains that are far from each other

I Potential problem for large domains – we are increasing the
communication



Test Case 1 – Ideal Channel and Floodplain
Initial Domain Decomposition

First test case is channel and floodplain:
- Ideal mesh: 64,415 vertices
- Shallow depths from –4m to +2m
- Tidal range from –1m to +1m

So we expect a lot of wetting/drying:
- Roughly 1/3 of the domain by size
- More of the domain by resolution

Initial decomposition is sub-optimal:
- 4 cores start fully wet
- 5 cores start partly wet/dry
- 6 cores start fully dry

Simulation of 4 days:
- Eight tidal cycles
- Extensive wetting and drying
- Some cores are always dry

Wall-clock time of ∼ 17.8 min
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Test Case 1 – Ideal Channel and Floodplain
Optimizing Initial Decomposition for Wet Vertices

We optimized the decomposition:
- All cores are both wet and dry

Changes to adcprep:
- METIS called twice
- Weights only on vertices (not edges)
- Separate subdomains for wet and dry

For example, core 0000:
- Wet region with 1591 vertices
- Dry region with 3013 vertices
- Not guaranteed to connect

Now every core is contributing
- Still imbalances during tidal cycle

Wall-clock time of ∼ 13.1 min
- Speedup of 26 percent
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Test Case 1 – Ideal Channel and Floodplain
Water Level Comparison and Timings

Test Code Version Cores CPU-hr % Change

Wet/Dry
ADCIRC v52.22

15
4.46

+ load balancing 3.29 – 26.3


Ideal-Channel_Ele.mov
Media File (video/quicktime)


Ideal-Channel_Ele.mov
Media File (video/quicktime)



Test Case 2 – Hurricane Irene (2011) on NC9
Initial Domain Decomposition

Second test case is Irene (2011):
- NC9 mesh: 622,946 vertices

Should be a lot of wetting/drying:
- Roughly 1/2 of domain starts dry
- Flooding of NC coastal regions

Initial decomposition is sub-optimal:
- Only 7 cores start fully wet
- Most cores are mostly dry

Simulation of 8 days:
- Initial flooding in SW Pamlico Sound
- Sound-side flooding of Hatteras Island

Wall-clock time of 3.52 hr
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Test Case 2 – Hurricane Irene (2011) on NC9
Optimizing Initial Decomposition for Wet Vertices

We optimized the decomposition:
- All cores are both wet and dry
- Domain boundaries follow shoreline
- Channels separate from floodplains

Domain not decomposed equally:
- Some cores have more wet / dry
- Reflects complexity of mesh

For example, core 0000:
- Wet region with 2274 vertices
- Dry region with 5479 vertices

For example, core 0001:
- Wet region with 3066 vertices
- Dry region with 4766 vertices

Now every core is contributing
- Still imbalances during storm

Wall-clock time of ∼ 2.77 hr
- Speedup of 21 percent
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Test Case 2 – Hurricane Irene (2011) on NC9
Water Level Comparison and Timings

Test Code Version Cores CPU-hr % Change

Tides
ADCIRC v52.22

15
259.2

+ load balancing 210.7 – 18.7

Irene
ADCIRC v52.22

96
334.3

+ load balancing 263.3 – 21.2


Irene_Ele_NC.mov
Media File (video/quicktime)
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Summary and Future Work
Improving the Efficiency of Wave and Surge Models

Tight coupling of SWAN+ADCIRC

I Resolution varies from kilometers to meters in unstructured mesh

I Domain decomposition to assign problem to 1000s of cores

I Spplications – surge barriers, flooding risk maps, forecasting

Dynamic load balancing

I Initial speed-up of 20 percent

I Revise adcprep so it can be called as a subroutine from ADCIRC

Obvious benefits for end users

I Faster forecasts for decision support for emergency managers

I Better utilize resources for larger studies for engineering design
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