Hurricane Wave and Storm Surge Forecasting for the North Carolina Coast

JC Dietrich¹, A Thomas¹, A Behnia², CN Dawson²

¹Dep't of Civil, Construction, and Environmental Engineering, NC State University ²Inst. for Computational Engineering and Sciences, University of Texas at Austin

Dep't of Civil and Environmental Engineering Jackson State University, Jackson MS, 4 May 2016

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

CCEE Department, Mann Hall, NCSU

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

University of Texas at Austin

- Institute for Computational Engineering and Sciences
 - Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ▶ Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

<個> < 注→ < 注→ < 注→ = 注

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

University of Texas at Austin

- Institute for Computational Engineering and Sciences
 - ▶ Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ► Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

<回▶ < 注▶ < 注▶ = 注

Hurricane Season 2005 Impacts on Southern Louisiana

Katrina: 08/28 - 08/29

・ロト ・四ト ・ヨト ・ヨト 三日

Hurricane Season 2005 Flooding of New Orleans

・ロト・雪・・雨・・雨・・日・ シック

Hurricane Season 2005 Flooding of New Orleans

Hurricane Season 2005 Katrina (2005) on 29 August

S Bunya, JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part I – Model Development and Validation. Monthly Weather Review, 138(2), 345-377.

JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part II – Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378-404.

Wide Range of Spatial Scales Unstructured, Finite-Element Meshes

| ▲ ■ ▶ | ▲ 国 ▶ | ▲ 国 | りへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ 9 < ⊙

Waves and Storm Surge Temporal Scales

Sea surface can be described with both long and short waves

- Long waves due to tides, storm surge
- Short waves due to wind (swell and wind-sea)

▲ロト▲圖ト▲画ト▲画ト 画 のべの

Waves and Storm Surge Simulating WAves Nearshore (SWAN)

For short waves, we use SWAN

- Does not represent the phase of each individual wave
 - Conserved quantity is the action density $N(t, x, y, \sigma, \theta)$
 - Can be integrated to compute statistical wave properties

Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\mathbf{x}} \cdot \left[(\mathbf{c}_g + \mathbf{U}) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = 0$$

Solution methods in geographic (x, y) and spectral (σ, θ) spaces:

- Gauss-Seidel in geographic space
- Iterative solution of matrix system in spectral space

Waves and Storm Surge ADvanced CIRCulation (ADCIRC)

For long waves, we use ADCIRC

Does represent the phases of tides and/or storm surge

Solves the generalized wave continuity equation for water levels ζ :

$$\frac{\partial^{2}\zeta}{\partial t^{2}} + \tau_{0}\frac{\partial\zeta}{\partial t} + \frac{\partial\tilde{J}_{x}}{\partial x} + \frac{\partial\tilde{J}_{y}}{\partial y} - UH\frac{\partial\tau_{0}}{\partial x} - VH\frac{\partial\tau_{0}}{\partial y} = 0$$

Solves the depth-averaged momentum equations for currents (U, V):

$$\frac{DU}{Dt} - fV = -g\frac{\partial}{\partial x} \left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_0 H} + \frac{M_x - D_x}{H}$$

$$\frac{DV}{Dt} + fU = -g\frac{\partial}{\partial y}\left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_0 H} + \frac{M_y - D_y}{H}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tight Coupling of SWAN+ADCIRC Flow Chart

JC Dietrich, et al. (2011). Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45-65, DOI:10.1016/j.coastaleng.2010.08.001.

Tight Coupling of SWAN+ADCIRC Domain Decomposition

Large-scale problem is cut into thousands of small-scale problems

Each computational core works on its own sub-mesh

Tight Coupling of SWAN+ADCIRC Parallel Communication

Communication between cores at sub-mesh boundaries

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tight Coupling of SWAN+ADCIRC Parallel Communication

Communication between cores at sub-mesh boundaries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Tight Coupling of SWAN+ADCIRC Parallel Scaling

NUMBER OF COMPUTATIONAL CORES

	TACC Ranger	TACC Lonestar
Node	Sun Blade x6420	Dell PowerEdge M610
CPU	4 Quad-core AMD Opteron 8356	2 Six-core Xeon 5680
Frequency	2.3 GHz	3.33 GHz
Architecture	AMD K10 (Barcelona)	Intel Nehalem (Westmere-EP)

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Engineering Applications Surge Barrier Design with the USACE

Engineering Applications Surge Barrier Design with the USACE

Engineering Applications Surge Barrier Design with the USACE

Engineering Applications Floodplain Risk Maps for FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

- Hypothetical storms with varying characteristics
- Combine results to develop 100-yr flood maps

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Engineering Applications Floodplain Risk Maps for FEMA

Joint Probability Method with Optimal Sampling (JPM-OS):

- Hypothetical storms with varying characteristics
- Combine results to develop 100-yr flood maps

Real-Time Forecasting North Carolina Forecasting System (NCFS)

In North Carolina, the guidance is available from the Coastal Emergency Risks Assessment (CERA) team:

Shared via Web portal: nc-cera.renci.org

Updated often with new guidance:

- Normal conditions with base meteorology from NOAA/NCEP
- Extreme conditions with storm advisories from NOAA/NHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Guidance is interactive within Google Maps:

- View results as a time series or as maxima
- Select layers for:
 - Water levels (above MSL or above ground)
 - Waves (significant heights, peak periods)
 - Wind speeds
 - Hydrographs at NOAA/NOS gage stations

Real-Time Forecasting Example during Irene (2011): nc-cera.renci.org

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Dynamic Load Balancing Initial Progress for DHS CRCoE Project

Motivation:

- Predictive models are costly
- ► Hundreds or even thousands of CPUs, hours of wall-clock time
- Why spend resources on regions that are never flooded by the storm?

Dynamic load balancing:

- Assign an equal amount of wet regions to each core
- Reallocate computational resources to improve parallel efficiency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Each core will be responsible for developing its own subdomain

Initial attempts:

- Optimize the initial domain decomposition
- Decomposition is still static for now

Dynamic Load Balancing History of Domain Decomposition in ADCIRC

We use METIS to decompose our domain

- ► Separate library, written in C, developed at Univ. Minnesota
- ► Weights based on the number of edges connected to each vertex
- METIS tries to equalize the weights across the subdomains

Our preprocessor (adcprep) was written about 15-18 years ago

- Our domains were entirely wet oceans and coastal regions
- ► No floodplains or dry regions to consider in the decomposition

Initial decomposition was static

Need to revise the domain decomposition

- Equal amounts of wet and dry to each core
- Make ADCIRC skip computations on dry vertices

Dynamic Load Balancing Changes to adcprep Preprocessor

Now METIS is called twice

- Called first to decompose only the wet regions
- Called again to decompose only the dry regions

Each core is assigned one wet region, and one dry region

- This way, each core will be contributing to the workload
- Work is balanced at start of simulation
- ► May become imbalanced due to wetting / drying during simulation

No guarantee that each core's wet and dry regions will be connected

- One core may have two subdomains that are far from each other
- Potential problem for large domains we are increasing the communication

Test Case 1 – Ideal Channel and Floodplain Initial Domain Decomposition

- First test case is channel and floodplain:
 - Ideal mesh: 64,415 vertices
- Shallow depths from –4m to +2m
- Tidal range from -1m to +1m

So we expect a lot of wetting/drying:

- Roughly 1/3 of the domain by size
- More of the domain by resolution

Initial decomposition is sub-optimal:

- 4 cores start fully wet
 - 5 cores start partly wet/dry
 - 6 cores start fully dry

Simulation of 4 days:

- Eight tidal cycles
- Extensive wetting and drying
- Some cores are always dry

Wall-clock time of \sim 17.8 min

◆□> ◆□> ◆豆> ◆豆> □目

Test Case 1 – Ideal Channel and Floodplain Initial Domain Decomposition

- First test case is channel and floodplain:
- Ideal mesh: 64,415 vertices
- Shallow depths from –4m to +2m
- Tidal range from -1m to +1m

So we expect a lot of wetting/drying:

- Roughly 1/3 of the domain by size
- More of the domain by resolution

Initial decomposition is sub-optimal:

- 4 cores start fully wet
- 5 cores start partly wet/dry
- 6 cores start fully dry

Simulation of 4 days:

- Eight tidal cycles
- Extensive wetting and drying
- Some cores are always dry

Wall-clock time of \sim 17.8 min

Test Case 1 – Ideal Channel and Floodplain

Optimizing Initial Decomposition for Wet Vertices

We optimized the decomposition:

- All cores are both wet and dry

Changes to adcprep:

- METIS called twice
- Weights only on vertices (not edges)
- Separate subdomains for wet and dry

For example, core 0000:

- Wet region with 1591 vertices
- Dry region with 3013 vertices
- Not guaranteed to connect

Now every core is contributing

- Still imbalances during tidal cycle

Wall-clock time of $\sim 13.1~\text{min}$ - Speedup of 26~percent

Test Case 1 - Ideal Channel and Floodplain

Optimizing Initial Decomposition for Wet Vertices

We optimized the decomposition:

- All cores are both wet and dry

Changes to adcprep:

- METIS called twice
- Weights only on vertices (not edges)
- Separate subdomains for wet and dry

For example, core 0000:

- Wet region with 1591 vertices
- Dry region with 3013 vertices
- Not guaranteed to connect

Now every core is contributing

- Still imbalances during tidal cycle

Wall-clock time of $\sim 13.1~\text{min}$ - Speedup of 26~percent

Test Case 1 - Ideal Channel and Floodplain Water Level Comparison and Timings

+ load balancing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 26.3

3.29

Test Case 2 – Hurricane Irene (2011) on NC9 Initial Domain Decomposition

- Second test case is Irene (2011):
- NC9 mesh: 622,946 vertices
- Should be a lot of wetting/drying:
- Roughly 1/2 of domain starts dry
- Flooding of NC coastal regions

Initial decomposition is sub-optimal:

- Only 7 cores start fully wet
- Most cores are mostly dry

Simulation of 8 days:

- Initial flooding in SW Pamlico Sound
- Sound-side flooding of Hatteras Island

・ロト ・四ト ・ヨト ・ヨト

Wall-clock time of 3.52 hr

Test Case 2 – Hurricane Irene (2011) on NC9 Initial Domain Decomposition

Second test case is Irene (2011):

- NC9 mesh: 622,946 vertices

Should be a lot of wetting/drying:

- Roughly 1/2 of domain starts dry
- Flooding of NC coastal regions

Initial decomposition is sub-optimal:

- Only 7 cores start fully wet
- Most cores are mostly dry

Simulation of 8 days:

- Initial flooding in SW Pamlico Sound
- Sound-side flooding of Hatteras Island

ヘロト 人間ト 人団ト 人団ト

-

Wall-clock time of 3.52 hr

Test Case 2 – Hurricane Irene (2011) on NC9 Optimizing Initial Decomposition for Wet Vertices

We optimized the decomposition:

- All cores are both wet and dry
- Domain boundaries follow shoreline
- Channels separate from floodplains

Domain not decomposed equally:

- Some cores have more wet / dry
- Reflects complexity of mesh

For example, core 0000:

- Wet region with 2274 vertices
- Dry region with 5479 vertices

For example, core 0001:

- Wet region with 3066 vertices
- Dry region with 4766 vertices

Now every core is contributing - Still imbalances during storm

Wall-clock time of $\sim 2.77~\text{hr}$ - Speedup of 21~percent

Test Case 2 – Hurricane Irene (2011) on NC9 Optimizing Initial Decomposition for Wet Vertices

We optimized the decomposition:

- All cores are both wet and dry
- Domain boundaries follow shoreline
- Channels separate from floodplains

Domain not decomposed equally:

- Some cores have more wet / dry
- Reflects complexity of mesh

For example, core 0000:

- Wet region with 2274 vertices
- Dry region with 5479 vertices

For example, core 0001:

- Wet region with 3066 vertices
- Dry region with 4766 vertices

Now every core is contributing - Still imbalances during storm

Wall-clock time of \sim 2.77 hr - Speedup of $21\ percent$

Test Case 2 – Hurricane Irene (2011) on NC9 Water Level Comparison and Timings

Test	Code Version	Cores	CPU-hr	% Change
Tides	ADCIRC v52.22	15	259.2	
	+ load balancing		210.7	- 18.7
Irene	ADCIRC v52.22	96	334.3	
	+ load balancing		263.3	- 21.2

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のく(や

Summary and Future Work Improving the Efficiency of Wave and Surge Models

Tight coupling of SWAN+ADCIRC

- ► Resolution varies from kilometers to meters in unstructured mesh
- Domain decomposition to assign problem to 1000s of cores
- Spplications surge barriers, flooding risk maps, forecasting

Dynamic load balancing

- Initial speed-up of 20 percent
- Revise adcprep so it can be called as a subroutine from ADCIRC

Obvious benefits for end users

- ► Faster forecasts for decision support for emergency managers
- ► Better utilize resources for larger studies for engineering design

COASTAL RESILIENCE CENTER A U.S. Department of Homeland Security Center of Excellence