Interactions between Waves, Flooding, and Beach Morphology during Storm Events

JC Dietrich<sup>1</sup>, A Gharagozlou<sup>1</sup>, MF Overton<sup>1</sup>, A Thomas<sup>1</sup>, RA Luettich Jr<sup>2</sup>, JG Fleming<sup>3</sup>, BO Blanton<sup>4</sup>, C Kaiser<sup>5</sup>

<sup>1</sup>Dep't of Civil, Construction, and Environmental Engineering, NC State University
<sup>2</sup>Institute of Marine Sciences, University of North Carolina at Chapel Hill
<sup>3</sup>Seahorse Coastal Consulting, Morehead City, NC
<sup>4</sup>Renaissance Computing Institute, Chapel Hill, NC
<sup>5</sup>Center for Computation & Technology, Louisiana State University

NC Beach Inlet & Waterway Association Annual Conference Wrightsville Beach NC, 14-15 November 2016



## Waves, Flooding, and Beach Morphology Overview

Project supported by NC Sea Grant:

- Two years: Feb 2016 through Jan 2018
- Goal To improve simulations of coastal flooding in regions where the beach and/or dune are highly dynamic during storms
- Objectives:
  - 1. Extend XBeach to applications at larger geographic extents
  - 2. Couple XBeach with ADCIRC to allow for dynamic feedback

Progress in the first 9 months:

- $1. \ \mbox{Continue sharing guidance about waves and flooding during storms}$ 
  - Hermine (Sep 2016)
  - Matthew (Oct 2016)
- 2. Developing large-domain XBeach models for Hatteras Island

# Real-Time Forecasting for Hurricane Waves and Surge Example of Coastal Flooding

Winds and Storm Surge during Arthur (2014)



・ロト ・ 一下・ ・ ヨト ・

36°

35°

# Real-Time Forecasting for Hurricane Waves and Surge Finite-Element Mesh for NC Coast



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Real-Time Forecasting for Hurricane Waves and Surge ADCIRC Surge Guidance System (ASGS)

SWAN+ADCIRC can be employed in real-time via the ASGS

# - Everything happens automatically

 $-\,$  Models are initialized, run and processed by Perl scripts

Wind fields from two sources:

- 1. Under normal conditions:
  - Downloaded from NAM model output by NOAA/NCEP
  - Converted into format compatible with SWAN+ADCIRC
- 2. Under hurricane conditions:
  - Download advisories from NOAA/NHC  $\,$
  - Generate wind field using parametric model (Holland, 1980)

Guidance can be shared in multiple formats:

- Raster images (JPG, PNG, etc.)
- Geo-referenced raster images (Google Earth, GIS)
- Web service (nc-cera.renci.org)

#### Real-Time Forecasting for Hurricane Waves and Surge Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org



#### Real-Time Forecasting for Hurricane Waves and Surge Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org



#### Real-Time Forecasting for Hurricane Waves and Surge Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org



Real-Time Forecasting for Hurricane Waves and Surge Water Level Predictions at Wrightsville Beach

Comparison of observations and predictions at NOAA 8658163

Advisory 27 – 2100 UTC on Tuesday 4 October 2016



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Real-Time Forecasting for Hurricane Waves and Surge Water Level Predictions at Wrightsville Beach

Comparison of observations and predictions at NOAA 8658163

- Advisory 32 - 0300 UTC on Thursday 6 October 2016



Real-Time Forecasting for Hurricane Waves and Surge Water Level Predictions at Wrightsville Beach

Comparison of observations and predictions at NOAA 8658163

- Advisory 36 - 0300 UTC on Friday 7 October 2016



# Coupling with XBeach for Morphodynamics eXtreme Beach (XBeach): xbeach.org

Our forecast system is limited:

- Bathymetry and topography are fixed / constant
- No consideration of beach erosion, dune breaching, etc.
- Flooding impacts are limited behind the dunes



With support from NC Sea Grant, we are coupling with XBeach:

- Open-source model developed in the Netherlands
- Capable of simulating hydrodynamic and morphodynamic processes
- Applied typically at beach scales (a few kilometers)

## Exploring Morphodynamics during Isabel (2003) Hurricane Isabel (2003)



We examine storm impacts during Isabel:

- Most powerful hurricane in 2003
- Made landfall on the Outer Banks on 18 Sep as Category 2 hurricane
- Caused overwash, dune breaching, and infrastructure destruction
- NC-12 closed at identified hotspots
- Major breaching occurred northeast of Hatteras Inlet

Exploring Morphodynamics during Isabel (2003) Pre- and Post-Storm LiDAR Data

Available LiDAR data:

- Pre- and post-storm data sets available from the NASA / USGS Experimental Advanced Airborne Research LiDAR
  - 16 Sep 2003
  - 21 Sep 2003
- Coverage of Outer Banks from Ocracoke Inlet to Oregon Inlet
- Surveyed width of 250-300 m  $\,$
- Resolution of 2 m
- Only the topographic data are used, due to water turbidity in bathymetric regions



Exploring Morphodynamics during Isabel (2003) Storm Impacts in Study Area



## Exploring Morphodynamics during Isabel (2003) Examples of Major Dune Erosion Events

Dune Erosion Event #1:

- Removal of first dune
- Erosion of second dune
- Deposition between and behind dunes











æ

<ロト <回ト < 注ト < 注ト

Exploring Morphodynamics during Isabel (2003) Examples of Major Dune Erosion Events

Dune Erosion Event #2:

- Removal of both dunes
- Deposition between and behind dunes
- Overwash extends to road









Initial Results with XBeach Generating Mesh for XBeach Simulations

Combining data sets:

- Pre-storm LiDAR with 1 m resolution
- NC flood mapping DEM with 10 m resolution

Converting to computational mesh:

- Total of  $1400\cdot720$  cells
- Cell widths:
  - Alongshore = 15 m
  - Cross-shore at offshore boundary = 30 m
  - Cross shore at shoreline = 3 m

Need to assign values:

- Waves and water levels at boundaries
- Vegetation properties
- Sediment properties



#### Initial Results with XBeach

#### Wave and Surge Boundary Conditions from SWAN+ADCIRC



#### Initial Results with XBeach Extracting Vegetation Classes

Obtaining the vegetation from pre-storm orthophotos:

- 1. Orthophoto showing land-cover characteristics
- 2. Delineating the sand, grass, trees/shrubs, and road
- 3. Converting to three vegetation classes for use in XBeach



Initial Results with XBeach Water Levels during Isabel (2003)

Flooding and erosion simulated by XBeach:

- Overwash of dunes on ocean side
- Flooding from sound side



## Initial Results with XBeach XBeach Profiles at Major Dune Erosion Events

Dune Erosion Event #1:

- Too much erosion of beach and first dune
- No changes to profile behind first dune









## Initial Results with XBeach XBeach Profiles at Major Dune Erosion Events

Dune Erosion Event #2:

- Removal of first dune
- Too much erosion between dunes
- No change to profile at and behind second dune







## Summary and Future Work Waves, Flooding, and Beach Morphology

Real-time forecasting for coastal North Carolina:

- Available several times per day at: nc-cera.renci.org
- Hermine and Matthew (2016)

Working with XBeach to simulate beach and dune erosion:

- Preliminary results are encouraging
  - Developed model for large domain 18 km of Hatteras Island
  - Too much erosion on beach and primary dune
- Need to couple with ADCIRC
  - Revised topography to improve flood predictions

